佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

楼主: superliong

【纪念当年的帖子(2010)】Add Maths功课讨论区

  [复制链接]
发表于 5-2-2012 06:38 PM | 显示全部楼层
回复 900# puangenlun


    原来如此,
回复

使用道具 举报


ADVERTISEMENT

发表于 5-2-2012 07:10 PM | 显示全部楼层
回复 898# puangenlun


    但我还prove 不到  coscec x + cot x = cot1/2 x
回复

使用道具 举报

发表于 5-2-2012 08:20 PM | 显示全部楼层
cosec(x)+cot(x)
=1/sin(x)+cos(x)/sin(x)
=(1+cos(x))/sin(x)
=(1+2cos^2(x)-1)/(2sin(x)cos(x))
=cot(x/2)
回复

使用道具 举报

发表于 5-2-2012 10:18 PM | 显示全部楼层
回复 903# puangenlun


    我怎么看都看不明白为什么
cosec(x)+cot(x)
=1/sin(x)+cos(x)/sin(x)
=(1+cos(x))/sin(x)
=(1+2cos^2(x)-1)/(2sin(x)cos(x))
=cot(x/2
回复

使用道具 举报

发表于 5-2-2012 10:50 PM | 显示全部楼层
回复  puangenlun


    我怎么看都看不明白为什么
cosec(x)+cot(x)
=1/sin(x)+cos(x)/sin(x)
=(1+c ...
josser 发表于 5-2-2012 10:18 PM



    cosec(x)+cos(x)
=(1+cos x)/(sin x)

注:cos (2x)=2 cos^2 (x)-1
        cos (x)=2cos^2(x/2)-1

        sin (2x)=2sin x cos x
        sin (x)=2sin(x/2)cos(x/2)

(1+cos x)/(sin x)
=[1+2cos^2(x/2)-1]/([2sin(x/2)cos(x/2)]
=cot(x/2)
回复

使用道具 举报

发表于 5-2-2012 11:42 PM | 显示全部楼层
这题呢prove that 4sin(x+1/6pi ) sin (x- 1/6pi) = 3- 4cos^2 x ?
我找到的却是 4- 5cos^2 x
D:
回复

使用道具 举报

Follow Us
发表于 6-2-2012 01:11 AM | 显示全部楼层
这题呢prove that 4sin(x+1/6pi ) sin (x- 1/6pi) = 3- 4cos^2 x ?
我找到的却是 4- 5cos^2 x
D:
josser 发表于 5-2-2012 11:42 PM



   4sin(x+1/6pi ) sin (x- 1/6pi) =  4{[(√3)/2]sin (x)+[cos(x)]/2}{[(√3)/2]sin (x)-[cos(x)]/2}

=[(√3)sin(x)+cos(x)][(√3)sin(x)-cos(x)]
=3sin^2(x)-cos^2(x)
=3sin^2(x)+3cos^2(x)-4cos^2(x)
=3-4cos^2(x)
回复

使用道具 举报

发表于 6-2-2012 09:50 AM | 显示全部楼层
我写错了,应该是
cosec(x)+cot(x)
=1/sin(x)+cos(x)/sin(x)
=(1+cos(x))/sin(x)
=(1+2cos^2(x/2)-1)/(2sin(x/2)cos(x/2))
=cot(x/2)
回复

使用道具 举报


ADVERTISEMENT

发表于 6-2-2012 09:55 AM | 显示全部楼层
906的题目除了直接expand
还可以用4.3的公式
http://zh.wikibooks.org/zh/%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B8
不知道你学过吗?
回复

使用道具 举报

发表于 6-2-2012 09:17 PM | 显示全部楼层
the sum of the first n terms of an A.P. is given by Sn=n/2[3n+1].Find
a) the sum of the first five terms
b)the 5th term
回复

使用道具 举报

发表于 6-2-2012 09:39 PM | 显示全部楼层
it is given that 1, x^2,x^4,x^6,...is a g.p. and its sum to infinity is 3. Find

a)the common ratio in terms of x

b)the positive value of x
回复

使用道具 举报

发表于 7-2-2012 02:02 PM | 显示全部楼层
the sum of the first n terms of an A.P. is given by Sn=n/2[3n+1].Find
a) the sum of the first five ...
wondefoo 发表于 6-2-2012 09:17 PM



    (a)S5=(5/2)[3(5)+1]=40

(b)T5=S5-S4
     T5=40-(4/2)[3(4)+1]
     T5=40-26
     T5=14
回复

使用道具 举报

发表于 7-2-2012 02:06 PM | 显示全部楼层
it is given that 1, x^2,x^4,x^6,...is a g.p. and its sum to infinity is 3. Find

a)the common rat ...
wondefoo 发表于 6-2-2012 09:39 PM



    (a)Common ratio, r=T2/T1=x^2/1=x^2

(b)a/(1-r)=3
    1/(1-x^2)=3
     x^2=2/3
     x=±√(2/3)


∴x>0, x=√(2/3)
回复

使用道具 举报

发表于 7-2-2012 02:15 PM | 显示全部楼层
回复 913# Allmaths


    真的很谢谢你(^_^)Y
回复

使用道具 举报

发表于 7-2-2012 02:30 PM | 显示全部楼层
本帖最后由 wondefoo 于 7-2-2012 03:14 PM 编辑

O(∩_∩)O哈哈~又有不会做的题目了

1)Amir drops a ball from a height of Hcm above the floor. Afther the first ,bounce, the ball reaches a height of H1 cm, where H1=0.8H. Afther the second bounce, the ball reaches a height of H2 cm, where H2 =0.8H1.The ball continues bounching in this way until it stops.Given that H=200, find

a)the number of bounces when the maximum height of the ball from the floor is less than 50cm for the first time
b)the total distance, in cm, travelled by the ball until it stops

2)The arrangement of the first three of an infinite series of similar triangles. The first triangle has a base of x cm and a height of y cm.
The measurements of the base and height of each subsequent triangle are half of the measurements of its previous one.

a) Show that the areas of the triangles form a g.p. and state the common ratio
b) Given that x=80cm and y =40cm,
i)determine which triangle has an area of 25/4 cm2,
ii)find the sum to infinity of the areas, in cm2,of the triangles
回复

使用道具 举报

发表于 15-2-2012 06:26 PM | 显示全部楼层
帮忙一下

if one of the roots of the equation 2x^2+px-9=0 is twice the other root, find the possible values of p.
回复

使用道具 举报


ADVERTISEMENT

发表于 15-2-2012 08:47 PM | 显示全部楼层
roots: q 2q
(x-q)(x-2q)=0
x^2-3qx+2q^2=0
2x^2-6qx+4q^2=0
compare with
2x^2+px-9=0
get
-6q=p
4q^2=-9
p=+-9i
q=-+1.5i
回复

使用道具 举报

发表于 15-2-2012 09:02 PM | 显示全部楼层
帮忙一下

if one of the roots of the equation 2x^2+px-9=0 is twice the other root, find the possib ...
lin96 发表于 15-2-2012 06:26 PM



    题目是不是抄错?

是+9还是-9?
回复

使用道具 举报

发表于 15-2-2012 09:03 PM | 显示全部楼层
roots: q 2q
(x-q)(x-2q)=0
x^2-3qx+2q^2=0
2x^2-6qx+4q^2=0
compare with
2x^2+px-9=0
get
-6q=p
...
puangenlun 发表于 15-2-2012 08:47 PM



大大, form4还没有学到complex number
回复

使用道具 举报

发表于 15-2-2012 09:25 PM | 显示全部楼层
get
-6q=p
4q^2=-9

square<0
impossible
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

所属分类: 欢乐校园


ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 17-2-2025 04:07 PM , Processed in 0.124437 second(s), 26 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表