查看: 3241|回复: 52
|
AddMaths 一些问题
[复制链接]
|
|
F(x)--> X+(5/X)
find the inverse function! |
|
|
|
|
|
|
|
发表于 23-6-2009 04:08 PM
|
显示全部楼层
回复 1# Legend 的帖子
F(x)--> X+(5/X)
x=F^-1(x+5/x)
let y=x+5/x
x^2-xy+5=0
用(-b+-sqrt(b^2-4ac))/2
x=(y+-sqrt(y^2-20))/2
F^-1(x)=(x+-sqrt(x^2-20))/2 |
|
|
|
|
|
|
|
发表于 24-6-2009 01:50 AM
|
显示全部楼层
Given that F(x) = x + 5/x
Let y = F^(-1) (x)
Then, F(y)= x
y + 5/y = x
y^2 - xy + 5 = 0 (refer to ax^2 + bx + c = 0 => x = [-b +- sqrt(b^2 - 4ac]/(2a)
y = [x +- sqrt(x^2 - 20)]/2
Hence, F^(-1) (x) = y
F^(-1) (x) = [x +- sqrt(x^2 - 20)]/2 |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 24-6-2009 02:45 PM
|
显示全部楼层
为什么要用 -b +- sqrt(b^2 - 4ac]/(2a) 的??
我们form 4 的第一课都没学到!! |
|
|
|
|
|
|
|
发表于 24-6-2009 04:25 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 24-6-2009 08:27 PM
|
显示全部楼层
回复 4# Legend 的帖子
你们的程度来说:
Factorisation 有两种:
Exp: x^2 + 5x + 6 = 0
方法一:
(x + 3)(x + 2 )=0
x= - 3 or x = - 2
方法二:
By completing the square
x^2 + 5x + 6 = 0
x = [ -5 +- sqrt(b^2 - 4ac) ]/(2a)
= [ -5 +- sqrt(5^2 - 4(1)(6)) ]/(2 x 1)
= [ - 5 +- sqrt(25 -24)]/2
= ( -5 +- 1 )/2
= (-5 - 1)/2 or (-5 + 1)/2
= -3 or -2
两个方法都可以找出x.
其实, 你通常是用方法一来factorise.
若无法或想不到怎样去factorise,就用方法二去factrorise就是利用formulae.
= |
|
|
|
|
|
|
|
发表于 24-6-2009 09:53 PM
|
显示全部楼层
借你的貼問一題...
express square root of (38-12(square root of 10)) in form of
a(square root of 2) + b (square root of 5) |
|
|
|
|
|
|
|
发表于 24-6-2009 11:22 PM
|
显示全部楼层
回复 7# 外星護法 的帖子
Solution:
sqrt[ 38 - 12 sqrt(10)] = a sqrt(2) + b sqrt (5)
38 - 12 sqrt (10) = [a sqrt(2) + b sqrt (5)]^2
38 - 12 sqrt (10) = 2a^2 + 2ab sqrt(10) + 5b^2
38 - 12 sqrt (10) = (2a^2 + 5b^2) + 2ab sqrt(10)
Equating the both sides,
LHS: 38 = 2a^2 + 5b^2 ----------1
RHS:- 12= 2ab -----------------2
From eqn 2, - 12 = 2ab
b = -6/a ---------3
Substitute eqn 3 into eqn 1,
38 = 2a^2 + 5(-6/a)^2
38 = 2a^2 + 5(36/a^2)
2 a^4 + 180 = 38a^2
2 a^4 - 38a^2 + 180 = 0
a^4 - 19a^2 + 90 = 0
(a^2 - 9 )(a^2 - 10)= 0
a^2 = 9 or a^2 = 10
a = sqrt(9) or a = sqrt(10)
Take values of a substitue into eqn 3,
then you will get the values of b.
After you knew the values of a and b,
then you need to substitute the values of a and b into the equation,
sqrt[ 38 - 12 sqrt(10)] = a sqrt(2) + b sqrt (5),
to verify which value of a and b is satisfy the equation.
Then, you choose the verified value of a and b plug into a sqrt(2) + b sqrt (5).
Therefore, you will form that equation. |
|
|
|
|
|
|
|
发表于 25-6-2009 10:38 AM
|
显示全部楼层
原帖由 外星護法 于 24-6-2009 09:53 PM 发表 ![](http://cforum3.cari.com.my/images/common/back.gif)
借你的貼問一題...
express square root of (38-12(square root of 10)) in form of
a(square root of 2) + b (square root of 5)
必须注明 a, b is rational number.
√(38-12√10)
= √2 √(19-6√10)
= √2 √(19-2√90)
= √2 (√10 - √9)
= 2√5 - 3√2 |
|
|
|
|
|
|
|
发表于 25-6-2009 11:20 AM
|
显示全部楼层
√(38 - 12√10)
= √(38 - 2√360)
= √[20+18 - 2√(20×18)]
= √20 - √18
= 2√5 - 3√2 |
|
|
|
|
|
|
|
发表于 26-6-2009 06:02 PM
|
显示全部楼层
= √[20+18 - 2√(20×18)]
= √20 - √18
怎样变的 ??? |
|
|
|
|
|
|
|
发表于 26-6-2009 06:08 PM
|
显示全部楼层
原帖由 ~HeBe~_@ 于 24-6-2009 11:22 PM 发表 ![](http://cforum6.cari.com.my/images/common/back.gif)
Solution:
sqrt[ 38 - 12 sqrt(10)] = a sqrt(2) + b sqrt (5)
38 - 12 sqrt (10) = [a sqrt(2) + b sqrt (5)]^2
38 - 12 sqrt (10) = 2a^2 + 2ab sqrt(10) + 5b^2
38 - 12 sqrt (10) = (2 ...
答案找到了。。谢谢你~~
不过。。很长~ |
|
|
|
|
|
|
|
发表于 26-6-2009 06:18 PM
|
显示全部楼层
原帖由 外星護法 于 26-6-2009 06:02 PM 发表 ![](http://cforum2.cari.com.my/images/common/back.gif)
= √[20+18 - 2√(20×18)]
= √20 - √18
怎样变的 ???
a > b ≥ 0,
(√a ± √b)² = a+b ± 2√ab
√(a+b ± 2√ab) = √a ± √b |
|
|
|
|
|
|
|
发表于 28-6-2009 01:12 AM
|
显示全部楼层
原帖由 mathlim 于 26-6-2009 06:18 PM 发表 ![](http://cforum3.cari.com.my/images/common/back.gif)
a > b ≥ 0,
(√a ± √b)² = a+b ± 2√ab
√(a+b ± 2√ab) = √a ± √b
对哦~
我怎么没想到~~
非常谢谢你~~ |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 29-6-2009 10:49 AM
|
显示全部楼层
我还有一道简单的问题. 但我solve 不到,应该是我忘了些什么吧!
请指教!
is an arithmetic progression. Tn= 15+5n
find the sum of the progression!! |
|
|
|
|
|
|
|
发表于 29-6-2009 02:59 PM
|
显示全部楼层
Tn = 15 + 5n
T1 = 20
Sn = (n/2)(T1 + Tn)
= (n/2)(20 + 15 + 5n)
= (5/2)n² + (35/2)n |
|
|
|
|
|
|
|
发表于 30-6-2009 10:38 PM
|
显示全部楼层
再借帖问一题:
prove that
A U B - A ∩ B = [A-(A∩B) U [B-(A∩B)] |
|
|
|
|
|
|
|
发表于 1-7-2009 12:38 AM
|
显示全部楼层
A U B - A ∩ B = [A-(A∩B) U [B-(A∩B)]
Proof:
RHS = [A-(A∩B) U [B-(A∩B)]
= [(A - A) U (A - B)] U [(B - A) u (B - B)]
= Null set U (A - B) U (B- A) u Null set
= (A - B) U (B - A)
= (A ∩ B') U (B ∩ A')
= [(A ∩ B') U B] ∩ [(A ∩ B') U A']
= (B U A) ∩ (B U B') ∩ (A' U A) ∩ (A' U B')
= (B U A) ∩ Universal set ∩ Universal set ∩ (A' U B')
= (B U A) ∩ (A' U B')
= (A U B) ∩ (A ∩ B)'
= (A U B) - (A ∩ B) |
|
|
|
|
|
|
|
发表于 1-7-2009 03:08 PM
|
显示全部楼层
另一个证法~
(A U B) - (A ∩ B) = (A U B) ∩ (A ∩ B)'
= [A ∩ (A ∩ B)'] U [B ∩ (A ∩ B)']
= [A - (A ∩ B)] U [B - (A ∩ B)]
[ 本帖最后由 Ivanlsy 于 1-7-2009 03:10 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 2-7-2009 03:10 PM
|
显示全部楼层
再一个证法:
[A \ (A ∩ B)] U [B \ (A ∩ B)]
= [A ∩ (A ∩ B)'] U [B ∩ (A ∩ B)']
= (A U B) ∩ (A ∩ B)'
= (A U B) \ (A ∩ B) |
|
|
|
|
|
|
| |
本周最热论坛帖子
|