|
【纪念当年的帖子(2010)】Add Maths功课讨论区
[复制链接]
|
|
发表于 8-6-2011 09:56 AM
|
显示全部楼层
我也有问题想问大家。。
那个请问那个m+怎样用?
为什么我按了还是不能记得之前的m value的? |
|
|
|
|
|
|
|
发表于 7-7-2011 11:56 AM
|
显示全部楼层
想问看这题怎样prove
(1-tan^2 x) / (1+tan^2 x)=1-2 sin^2 x |
|
|
|
|
|
|
|
发表于 8-7-2011 09:43 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 8-7-2011 09:47 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 8-7-2011 08:50 PM
|
显示全部楼层
回复 844# menglee90
如何变成 cos^2 x -sin^2 x |
|
|
|
|
|
|
|
发表于 9-7-2011 09:59 AM
|
显示全部楼层
回复 845# _韩_
(1- tan^2 x) / sec^2 x = 1/sec^2 x - tan^2 x / sec^2 x = cos^2 x - sin^2 x |
|
|
|
|
|
|
|
发表于 11-7-2011 05:05 PM
|
显示全部楼层
find the values of k for which line x+y=k is a tangent to the curve x^2 + y^2 = 8. |
|
|
|
|
|
|
|
发表于 11-7-2011 05:39 PM
|
显示全部楼层
回复 847# josser
x + y = k is the tangent to circle x^2 + y^2 = 8 when they intersect at only one point, means the following simultaneous equation has only one solution.
x + y = k ---> y = k-x
x^2 + y^2 = 8
x^2 + y^2 = 8
x^2 + (k-x)^2 = 8
....
2x^2 - 2kx + k^2 - 8 = 0
2x^2 - 2kx + k^2 - 8 = 0 has only one solution, means
b^2-4ac = 0
(-2k)^2 - 4(2)(k^2 - 8) = 0
...
16-k^2=0
k = 4 or -4 |
|
|
|
|
|
|
|
发表于 26-7-2011 03:32 PM
|
显示全部楼层
这题...
y=x^n , where n is an integer. given that the curve passes between the points (2,200) and (2,2000) determine the value of n . |
|
|
|
|
|
|
|
发表于 27-7-2011 02:40 PM
|
显示全部楼层
本帖最后由 menglee90 于 27-7-2011 02:44 PM 编辑
回复 849# josser
问题不明确,这是完整的问题?答案是n=8,9,10? |
|
|
|
|
|
|
|
发表于 27-7-2011 11:04 PM
|
显示全部楼层
(i) sketch the graph of the curve y=3sin x , for -π < x < π
The straight line y=kx , where k is a constant, passes through the maximum point of this curve for -π < x < π.
(ii) find the value of k in terms of π
(iii) state the coordinates of the other point , apart from the origin , where the line and the curve intersect. |
|
|
|
|
|
|
|
发表于 28-7-2011 10:24 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-7-2011 07:22 PM
|
显示全部楼层
回复 josser
问题不明确,这是完整的问题?答案是n=8,9,10?
menglee90 发表于 27-7-2011 02:40 PM
问题还有个graph 的,只是我不知道如何post 上来 。。 答案是9 |
|
|
|
|
|
|
|
发表于 28-7-2011 07:30 PM
|
显示全部楼层
还有一题。。。
prove (1/sin x + 1/tan x )^2 = (1+cos x)/( 1-cos x) |
|
|
|
|
|
|
|
发表于 28-7-2011 08:17 PM
|
显示全部楼层
回复 854# josser
(1/sin x + 1/tan x )^2=1/(sin^2 x) + 1/(tan^2 x) + 2/(sin x tan x)
=1/(sin^2 x) + (cos^2 x)/(sin^2 x) + 2 cos x /(sin^2 x)
=(1 + 2 cos x + cos^2 x) / sin^2 x
= (1 + cos x)^2 / (1 - cos^2 x)
= (1 + cos x)^2 / (1 - cos x)(1+cos x)
=
(1 + cos x)/ (1 - cos x) |
|
|
|
|
|
|
|
发表于 10-8-2011 10:48 PM
|
显示全部楼层
the sum of the first hundred terms of an ap with first term a and common difference d is T . The sum of the first 50 odd-numbered terms is 1/2T-1000. Find the value of d . |
|
|
|
|
|
|
|
发表于 11-8-2011 10:33 AM
|
显示全部楼层
回复 856# josser
问题不明确。The sum of the first 50 odd-numbered terms is 1/2T-1000很模糊。 |
|
|
|
|
|
|
|
发表于 11-8-2011 10:59 AM
|
显示全部楼层
the sum of the first hundred terms of an ap with first term a and common difference d is T . The sum ...
josser 发表于 10-8-2011 10:48 PM
你的1/2T-1000是:
(1/2)T-1000?
1/(2T-1000)?
1/(2T)-1000?
brackets 很重要啊。。 |
|
|
|
|
|
|
|
发表于 11-8-2011 10:56 PM
|
显示全部楼层
回复 858# Allmaths
很不好意识,是 (1/2) T - 1000 >< ... 但这一题已solve 到了。。。
这里有另一题我不会做,
the sum of the first n term of a series is given by the expression ( 6- (2^(n+1))/(3^(n-1))). by defining an expression for the nth term of the series, or otherwise , show that this is a GP , and state the values of the first term and the common difference . |
|
|
|
|
|
|
|
发表于 11-8-2011 11:06 PM
|
显示全部楼层
*common ratio ... 不是common difference >< |
|
|
|
|
|
|
| |
本周最热论坛帖子
|