|
发表于 26-6-2008 11:57 PM
|
显示全部楼层
1) A n B n A'
= (A n A') n B ...commutative law
= empty set n B
= empty set
2)A - B = B' - A'
RHS = B' - A'
= B' n (A')' ...definition of differences
= B' n A
= A n B' ...commutative law
= A - B ...definition of differences
3) (A u B)' u A = A u B'
LHS = (A u B)' u A
= (A' n B') u A ...De morgan's law
= (A u A') n (A u B') ... Distributive law
= universal set n ( A u B')
= A u B'
4)C - (A n B) = (C - A) u (C - B)
LHS = C - ( A n B)
= C n ( A n B)' ... definition of differences
= C n ( A' U B') ...De morgan's law
= (C n A') u ( C n B') ...Distributive law
= (C - A ) u (C - B) ...definition od differences
5) (A u B) - (A' n C) = A u (B - C)
LHS = (A u B) - ( A' n C)
= (A u B) n (A' n C)' ...definition of differences
= (A u B ) n (A u C') ...de morgan's law
= A u ( B n C') ...Distributive law
= A u ( B - C) ... Definition of differences
[ 本帖最后由 darksider 于 27-6-2008 01:00 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 28-6-2008 11:14 AM
|
显示全部楼层
回复 619# darksider 的帖子
f(x) = (x-a)[(x-b)A(x) + p] + f(a) = (x-a)[(x-b)A(x) + p(x-a) + f(a)
f(x) = (x-b)[(x-a)B(x) + q] + f(b) = (x-b)[(x-a)B(x) + q(x-b) + f(b)
remainder = p(x-a) + f(a) = q(x-b) + f(b)
coefficient of x must be the same for both side , so p=q
therefore p = [f(b)-f(a)]/(b-a)
remainder = [f(b)-f(a)]/(b-a) * (x-a) + f(a) |
|
|
|
|
|
|
|
发表于 29-6-2008 09:03 PM
|
显示全部楼层
原帖由 hamilan911 于 2008/6/28 11:14 AM 发表 
f(x) = (x-a)[(x-b)A(x) + p] + f(a) = (x-a)[(x-b)A(x) + p(x-a) + f(a)
f(x) = (x-b)[(x-a)B(x) + q] + f(b) = (x-b)[(x-a)B(x) + q(x-b) + f(b)
remainder = p(x-a) + f(a) = q(x-b) + f(b)
coefficient of ...
谢谢。
[ 本帖最后由 darksider 于 30-6-2008 06:20 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 30-6-2008 06:26 PM
|
显示全部楼层
h) if 2^x = 4^y = 8 ^z , and xyz = 288 , show that 1/(2x) + 1/4y + 1/8z = 11/ 96
我的做法行得通吗?
2^x = 2^2y = 2^3y , so x = 2y = 3z
x = 2y
z = 2y/3
xyz = 288 , (2y)(y)(2y/3) = 288
4y^3 = 864
y^3 = 216
y = 6
therefore , x = 12 , y = 6 and z = 4
1/2x + 1/4y + 1/8z = 11/96
LHS = 1/2(12) + 1/4(6) + 1/8(4)
= 1/24 + 1/24 + 1/32
= 11/96
(shown) |
|
|
|
|
|
|
|
发表于 30-6-2008 07:25 PM
|
显示全部楼层
.......留楼
[ 本帖最后由 darksider 于 30-6-2008 07:34 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 1-7-2008 04:08 PM
|
显示全部楼层
if x + y = 1 , prove that 1/x + 1/y is more than or equal 4.
谢谢! |
|
|
|
|
|
|
|
发表于 1-7-2008 05:45 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 1-7-2008 05:53 PM
|
显示全部楼层
回复 626# darksider 的帖子
题目有问题。
应该state X 和 Y 是正数。
如果X and Y 是正数
x+y=1
x^2+xy=x
xy=x-x^2
1/x+1/y
=(x+y)/xy
=1/(x-x^2)
=-1/((x-1/2)^2-1/4)
=4/(1-4(x-1/2)^2)
since 0<x<1
4/(1-4(x-1/2)^2)>=4
1/x + 1/y>=4 |
|
|
|
|
|
|
|
发表于 1-7-2008 06:01 PM
|
显示全部楼层
x + y = 1, x > 0, y > 0
x + y ≥ 2√xy
1 ≥ 2√xy
1 ≥ 4xy
1/xy ≥ 4
1/x + 1/y = (x+y)/xy = 1/xy ≥ 4 |
|
|
|
|
|
|
|
发表于 1-7-2008 07:44 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 1-7-2008 08:08 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 1-7-2008 08:43 PM
|
显示全部楼层
Show that the expression -x^2 + px -q is always negative for all real values of x if 4q > f^2. |
|
|
|
|
|
|
|
发表于 1-7-2008 09:29 PM
|
显示全部楼层
回复 632# darksider 的帖子
-x^2 + px - q
= - (x^2 - px) - q
= - (x - p/2)^2 + p^2/4 - q
如果p^2/4 - q < 0,那么-x^2 + px - q < 0
ie 4q < p^2 |
|
|
|
|
|
|
|
发表于 1-7-2008 10:15 PM
|
显示全部楼层
原帖由 darksider 于 1-7-2008 08:08 PM 发表 
怎样知道 0 < x < 1
x + y = 1, x > 0, y > 0
y > 0
- y < 0
1 - y < 1
x < 1
∴ 0 < x < 1
同理,
0 < y < 1 |
|
|
|
|
|
|
|
发表于 2-7-2008 07:50 PM
|
显示全部楼层
原帖由 hamilan911 于 2008/7/1 09:29 PM 发表 
-x^2 + px - q
= - (x^2 - px) - q
= - (x - p/2)^2 + p^2/4 - q
如果p^2/4 - q < 0,那么-x^2 + px - q < 0
ie 4q < p^2
那个 4q < f^2 ,这个f 到底是? |
|
|
|
|
|
|
|
发表于 2-7-2008 08:09 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 3-7-2008 03:47 AM
|
显示全部楼层
原帖由 hamilan911 于 2008/7/2 08:09 PM 发表 
应该是p, typing error
哦,原来如此 , 谢! |
|
|
|
|
|
|
|
发表于 3-7-2008 11:23 PM
|
显示全部楼层
救命~(vector)
Figure shows two straight roads crossing at O. Two cars, A and B, are moving towards O with a speed of 80km/h and 60km/h respectively. FInd the velocity of B relative to A.

Ans : 41.4km/h, S46`57'W |
|
|
|
|
|
|
|
发表于 3-7-2008 11:30 PM
|
显示全部楼层
回复 638# 不死的ProG 的帖子
哈哈!这个我最喜爱的。。
不难。 |
|
|
|
|
|
|
|
发表于 4-7-2008 12:11 AM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|