|
【纪念当年的帖子(2010)】Add Maths功课讨论区
[复制链接]
|
|
发表于 31-5-2010 10:55 AM
|
显示全部楼层
考着試,所以很久沒上來了
1.A function g is definied by g:x-->a/(b-x) , b is not equal x ,The values 3 and 5 are mapped onto themselves under g.
a.Find the value of a and b
b.State the value of x such that the function g is undefined |
|
|
|
|
|
|
|
发表于 31-5-2010 12:16 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 1-6-2010 08:21 PM
|
显示全部楼层
回复 579# 乙劍真人
后天要考高数了,今天来临时抱佛脚,遇到不会的题目,请帮帮我。
Given that x=-3 is the equation of the axis of symmetry of the graph of the quadratic function g(x)=x^2 + 2px + 2p - 1, find
(a)the value of p
(b)the minimum value of the function
答案是3和-4.可是我只做到(a)=1...... |
|
|
|
|
|
|
|
发表于 1-6-2010 08:28 PM
|
显示全部楼层
回复 乙劍真人
后天要考高数了,今天来临时抱佛脚,遇到不会的题目,请帮帮我。
Given that x=-3 is the equation of the axis of symmetry of the graph of the quadratic function g(x)=x^2 + 2px + 2p - 1, find
(a)the value of p
(b)the minimum value of the function
用 completing the square!
g(x) = x^2 + 2px + 2p - 1
= x^2 + 2px + (2p/2)^2 - (2p/2)^2 + 2p - 1
= (x+p)^2 - p^2 + 2p - 1
x + p = 0
-3 + p = 0
p = 3
minimum value = -p^2 + 2p - 1
= -(3)^2 + 2(3) - 1
= -4 |
|
|
|
|
|
|
|
发表于 1-6-2010 08:28 PM
|
显示全部楼层
回复 576# 乙劍真人
The volume of a sphere increases from 288pi cm^3 to 290pi cm^3.Calculate the approximate increase in its radius.
做到满头大汗 |
|
|
|
|
|
|
|
发表于 1-6-2010 08:32 PM
|
显示全部楼层
回复 584# 乙劍真人
谢谢老师的协助,这个月在考试,忙着温习其他科目,有点忽略掉高数了。。。 |
|
|
|
|
|
|
|
发表于 1-6-2010 08:54 PM
|
显示全部楼层
回复 乙劍真人
The volume of a sphere increases from 288pi cm^3 to 290pi cm^3.Calculate the approximate increase in its radius.
V = 4/3 pi r^3
dV/dr = 4 pi r^2
delta r = dr/dV x delta V
= 1/(4 pi r^2) x (290pi - 288pi) ---(1)
V original = 288pi
4/3 pi r^3 = 288pi
r^3 = 216
r = 6 ---------(2)
sub. (2) into (1)
delta r = 1/[4pi (6)^2] x 2pi
= 2/[4(36)]
= 1/72 cm |
|
|
|
|
|
|
|
发表于 5-6-2010 11:56 PM
|
显示全部楼层
回复 587# 乙劍真人
为了袮补这次考试的失败,我刚到了大众书局买了高数的书回家去做。先从第一课从新出发,巩固根基。可是刚做几题罢了就出现不会的现象。请老师帮帮我。
The function f is defined by f:x =x^2.
(a)Find the range of values of f for the domain x大过和等于-1,小过和等于4
(b)Determine another domain for f to have the same range
我做错了,连我都不懂错在哪里。。。。。。 |
|
|
|
|
|
|
|
发表于 6-6-2010 09:26 PM
|
显示全部楼层
本帖最后由 Enceladus 于 6-6-2010 09:39 PM 编辑
回复 587# 乙劍真人
1. A function f is defined by f:x = (a/x) + 2 for all values of x except x = h and a is a constant.(a)Determine the value of h
(b)Given that the value 3 maps to itself under f, find
(i)the value of a
(ii)the value of inversed f(-1)
2. f is given by f:x = x/(x-1). Find f^2.
3. Express the quadratic expression (2x^2/3) - (4x/5) -1 in the form a(x+b)^2 +c. Hence, solve the equation (2x^2/3) - (4x/5) -1 = 3. Correct your answer to two decimal places.
4.还有一样,什么是differ by
第一题竟然用0,可以吗?第二题我来来去去都变不出x。第三题是我的死穴,这个我忘记他的做法了。帮帮我。。。。。。 |
|
|
|
|
|
|
|
发表于 6-6-2010 10:38 PM
|
显示全部楼层
回复 乙劍真人
为了袮补这次考试的失败,我刚到了大众书局买了高数的书回家去做。先从第一课从新 ...
Enceladus 发表于 5-6-2010 11:56 PM
什么牌子的书?
(a) f(x) = x^2
domain : -1<= x <=4
x = -1 0 1 2 3 4
f(x) = 1 0 1 4 9 16
then, range = {0 <= f(x) <= 16}
(b) 应该是 0 <= x <= 4 |
|
|
|
|
|
|
|
发表于 6-6-2010 10:45 PM
|
显示全部楼层
回复 乙劍真人
1. A function f is defined by f:x = (a/x) + 2 for all values of x except x = h ...
Enceladus 发表于 6-6-2010 09:26 PM
1. (a) 对,h=0
(b) (i)[a/(3)] + 2 = 3
a = 3
(ii) f^-1(x) = 3/(x-2)
f^-1(-1) = -1
2. ff(x) = [x/(x-1)]/{[x/(x-1)] - 1}
= x/[x-1(x-1)]
= x
3. 看不懂题目
4. differ 就是 different 的意思咯,请给完整的题目.. |
|
|
|
|
|
|
|
发表于 7-6-2010 08:03 PM
|
显示全部楼层
回复 591# 乙劍真人
那本书的封面是褐色和橙色。Pelangi的,作者是Pauline Wong Mee Kiong。题目是SPM Quick Revision Additional Mathematics。图片有一个螺这样的东西。 |
|
|
|
|
|
|
|
发表于 7-6-2010 09:11 PM
|
显示全部楼层
回复 乙劍真人
3. Express the quadratic expression (2x^2/3) - (4x/5) -1 in the forma(x+b)^2 +c. Hence, solve the equation (2x^2/3) - (4x/5) -1 = 3.Correct your answer to two decimal places.
|
|
|
|
|
|
|
|
发表于 9-6-2010 07:06 PM
|
显示全部楼层
各位好!
想请问哪儿有得download SPM add maths past year questions 吗? |
|
|
|
|
|
|
|
发表于 10-6-2010 08:13 PM
|
显示全部楼层
请帮帮忙吧>.<(form 4, chapter 1)
1. Given the function g(x)= 4x+7/x-2 , x not equal to 2 , find the objects that are mapped onto themselves.
2. Given the function h:x=x-6/x^2-4, state the values of x such that the function
h is undefined.
3. Given the function g:x=3x^2-5, find the values of t such that
g(t)=-7t/2.
4. Given the functions f:x=p-2x and g:x=3x^2-7, find the value of p if fg(2)=4.
5. Given that g:x=x^2-3, find g^2. |
|
|
|
|
|
|
|
发表于 10-6-2010 09:08 PM
|
显示全部楼层
本帖最后由 Allmaths 于 10-6-2010 09:17 PM 编辑
请帮帮忙吧>.
ling_wen 发表于 10-6-2010 08:13 PM
1) obejcts mapped onto themselves, g(x)=x
4x+7/x-2 =x 4x+7=x^2-2x
0=x^2-6x-7
0= (x-7)(x+1)
x=7 or x=-1
2) function undefined, denominator=0
x^2-4=0
(x-2)(x+2)=0
x=2 or x=-2
3) g(x)=3x^2-5
g(t)=3t^2-5=-7t/2
6t^2-10=-7t
6t^2+7t-10=0
(6t-5)((t+2)=0
t=5/6 or t=-2
4) g(x)=3x^2-7
g(2)=3(2)^2-7
=5
fg(2)=f[g(2)]
=f(5)
= p-2(5)
= p-10
since fg(2)=4
p-10=4
p=14
5) g(x)=x^2-3
g^2(x)= gg(x)
= g[g(x)]
= g(x^2-3)
= (x^2-3)2-3
= x^4 -6x^2+6 |
|
|
|
|
|
|
|
发表于 10-6-2010 09:20 PM
|
显示全部楼层
1) obejcts mapped onto themselves, g(x)=x
4x+7/x-2 =x ...
Allmaths 发表于 10-6-2010 09:08 PM
thanks for ur answer~
^^谢谢~ |
|
|
|
|
|
|
|
发表于 14-6-2010 04:52 PM
|
显示全部楼层
请帮忙 (form 5, chapter 3)
3 points A,B,C are such tat OA= 5i+6j , OB= 6i+4j and OC=ki+2j , where O is
~ ~ ~ ~ ~ ~
the origin. find the value of k if the points A, B, C are collinear. |
|
|
|
|
|
|
|
发表于 14-6-2010 08:55 PM
|
显示全部楼层
请帮忙 (form 5, chapter 3)
3 points A,B,C are such tat OA= 5i+6j , OB= 6i+4j and OC=ki+2j , where O is
~ ~ ~ ~ ~ ~
the origin. find the value of k if the points A, B, C are collinear.
josser 发表于 14-6-2010 04:52 PM
这个是 chapter 5 噢..
我们必须找 AB 跟 BC (因为这三个点是一个直线)
AB = AO + OB
= -(5i+6j) + (6i+4j)
= i-2j
BC = BO + OC
= -(6i+4j) + (ki+2j)
= (-6+k)i-2j
Collinear: AB = pBC
i-2j = p[(-6+k)i-2j]
1 = p(-6+k) -------(1)
-2=-2p -------------(2)
From (2), p=1 -----(3)
sub.(3) into (1)
1= -6+k
k = 7 |
|
|
|
|
|
|
|
发表于 14-6-2010 09:21 PM
|
显示全部楼层
回复 599# 乙劍真人
oh。。。原来是这样~ 谢谢你呀!
还有一题, 同样chapter 的:
given tat a=7i+8j , b=2i-5j and c=13i-7j , find |a+b+c|
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
|
|
|
|
|
|
| |
本周最热论坛帖子
|