|
发表于 14-10-2007 09:38 AM
|
显示全部楼层
我有maths T, data description这个chapter的问题要问,希望高手能帮忙。
The lifespan (in hours) for a certain type of batteries is measured by taking a sample of 100 batteries and the result are given below.
Lifespan(hours) | 90
| 95
| 100
| 105
| 110
| 115
| 120
| 125
| 130
| Frequency
| 2
| 17
| 30
| 21
| 15
| 9
| 3
| 2
| 1
| Estimate the fraction of batteries that have lifespans within one standard deviation from the mean.
答案:33/50
这是我的想法:
mean=104.25
fraction of batteries within 1 standard deviation的意思就是把lifespan 100、105和110的frequency就起来over 100,所以=66/100=33/50.
我的想法对不对呢?Within 1 standard deviation的真正定义何在?
[ 本帖最后由 zfc 于 14-10-2007 09:54 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 14-10-2007 04:29 PM
|
显示全部楼层
回复 #441 zfc 的帖子
你的做法对可是应该这样写出来
standard deviation = 6.43
mean = 104.25
104.25 - 6.43< x < 104.25 + 6.43
97.82 < x < 110.68
97.82 < 100, 105, 110 < 110.68
(30 + 21 + 15)/100 = 33/50 |
|
|
|
|
|
|
|
发表于 15-10-2007 03:56 PM
|
显示全部楼层
原帖由 Leong13 于 14-10-2007 04:29 PM 发表 
你的做法对可是应该这样写出来
standard deviation = 6.43
mean = 104.25
104.25 - 6.43< x < 104.25 + 6.43
97.82 < x < 110.68
97.82 < 100, 105, 110 < 110.68
(30 + 21 + 15)/100 = 33/50
哦,谢谢你。
我还以为within one standard deviation的意思是standard deviation=1。 |
|
|
|
|
|
|
|
发表于 15-10-2007 07:44 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 15-10-2007 10:39 PM
|
显示全部楼层
leong13
你用的书是不是federal study aids mathematics T
pg 290 q39的问题?一样的题目, 答案是0.203
先找了P(X=0)=e^-3=0.04979
然后,5C1(0.04979)(1-0.04979)^4=0.203 |
|
|
|
|
|
|
|
发表于 16-10-2007 09:15 AM
|
显示全部楼层
回复 #444 Leong13 的帖子
如果题目是像我了解的那样,答案不应该是这样。。。。应该是 0.203,不好意思之前算错了。 |
|
|
|
|
|
|
|
发表于 16-10-2007 08:03 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 16-10-2007 08:04 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 16-10-2007 10:38 PM
|
显示全部楼层
原帖由 Leong13 于 10-10-2007 03:10 PM 发表 
1. an electrical appliance shop has 4
television sets for rental on a monthly
basis. the number of televisions
requested by customers in one month
follows a poisson distribution ...
1)
P(X=x) = e^(-3)*3^x/x!
E(X) = 1*P(X=1)+2*(PX=2)+3*(PX=3)+4*P(X>=4)
= ....
2) probability of correct call , p = 0.999
number of call = n ,
p^n =< 0.1
n >= .... |
|
|
|
|
|
|
|
发表于 19-10-2007 06:07 PM
|
显示全部楼层
1.floor tiles are manufactured in two
sizes, large and small. the mass of a
large tile is distributed normallly with
mean 30 kg and standard deviation 0.5 kg.
the mass of a small tile is distributed
normally with mean 14.5 kg and standard
deviation 0.25 kg.
i) a man buys a number of large tiles
and small tiles for his compound.
he finds that his orger exceeded
his needs slightly so that either
a large tile or two small tiles
will not be used. by assuming
that the probability of either
of the two alternatives is the
same , find the probability
that the mass of the remaining
tile(s) will exceed 29.5 kg |
|
|
|
|
|
|
|
发表于 19-10-2007 09:36 PM
|
显示全部楼层
If the straight line y = mx + c is a tangent to the x^2 / a^2 + y^2 / b^2 = 1 , show that c^2 = a^2m^2 + b^2
Find the gradient of the tangent to the curve which passes through the point sqrt(a^2+b^2), 0. Hence determine the corrdinates of the vertices of the square whose sides touch the curve.
c^2 = a^2m^2 + b^2我已解。Find the gradient of tangent to the curve,我算到m = +-1,是吗?再下一part真的不知道如何做了。。。 |
|
|
|
|
|
|
|
发表于 19-10-2007 09:43 PM
|
显示全部楼层
关于第二part找Gradient of tangent (也就是dy / dx),我就用dy/dx方式找,为什么不能用呢:
x^2 / a^2 +y^2 / b^2 = 1
2x / a^2 + 2y ( dy / dx ) / b^2 = 0
subs x = sqrt (a^2 + b ^2) , y = 0进去
当y = 0放进去,dy / dx 都不见了。。。怎么用dy/dx方式找呢? |
|
|
|
|
|
|
|
发表于 20-10-2007 11:08 AM
|
显示全部楼层
原帖由 lavendar_o5 于 19-10-2007 09:36 PM 发表 
If the straight line y = mx + c is a tangent to the x^2 / a^2 + y^2 / b^2 = 1 , show that c^2 = a^2m^2 + b^2
Find the gradient of the tangent to the curve which passes through the point sqrt(a ...
m = +-1 是对的
运用之前得到的资料 :
考虑 coordinate (sqrt[a2+b2],0) .从这个点 tangent to curve 的 line 的 equation
y = x + c 或 y = -x + c (因为 m = +-1)
因为它经过 (sqrt[a2+b2],0) 所以 c = + - sqrt[a2+b2]
所以他的 y-intercept 是 (0,sqrt[a2+b2]) 和 (0,- sqrt[a2+b2])
同样的再拿点 (-sqrt[a2+b2],0) ,那么这 4 个点就是 vertices of square .而且都 tangent to the curve (以图画来看想是 diamond 的形状)
原帖由 lavendar_o5 于 19-10-2007 09:43 PM 发表 
关于第二part找Gradient of tangent (也就是dy / dx),我就用dy/dx方式找,为什么不能用呢:
x^2 / a^2 +y^2 / b^2 = 1
2x / a^2 + 2y ( dy / dx ) / b^2 = 0
subs x = sqrt (a^2 + b ^2) , y = 0进去
当 ...
因为 (sqrt[a2+b2],0) 都不是 curve 上面的 point(她是在 curve 的外面) ,所以你不可以直接 substitute 进去。
补充: (sqrt[a2+b2],0) 只是 line 经过的 point , 不是 curve 经过的 point
[ 本帖最后由 dunwan2tellu 于 20-10-2007 11:09 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 20-10-2007 02:08 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 20-10-2007 11:08 AM 发表 
m = +-1 是对的
运用之前得到的资料 :
考虑 coordinate (sqrt[a2+b2],0) .从这个点 tangent to curve 的 line 的 equation
y = x + c 或 y = -x + c (因为 m = +-1)
因为它经过 (sqrt[a2+b2] ...
真的谢谢您!我怎么没看出它是LINE的点,而不是Curve的点呢。。。真笨。。哈哈 |
|
|
|
|
|
|
|
发表于 20-10-2007 02:10 PM
|
显示全部楼层
再来一题:
The straight line y = mx – 4 meets the curve y^2 = 8x at 2 distinct points A (x1, y1) and B(x2, y2). Show that
(a) x1+y1=(8m+8)/m
If O is the origin and C is a point such that OACB is a parallelogram, show that as m varies, the equation of the locus of C is y^2 +8y=8x
是否题目有误?我怎么算,x1+y1都不可能等于(8m+8)/m |
|
|
|
|
|
|
|
发表于 20-10-2007 03:52 PM
|
显示全部楼层
原帖由 lavendar_o5 于 20-10-2007 02:10 PM 发表 
The straight line y = mx – 4 meets the curve y^2 = 8x at 2 distinct points A (x1, y1) and B(x2, y2). Show that
(a) x1+y1=(8m+8)/m
If O is the origin and C is a point such that OACB is a parallelogram, show that as m varies, the equation of the locus of C is y^2 +8y=8x
是否题目有误?我怎么算,x1+y1都不可能等于(8m+8)/m
正确来说应该是
x1 + x2 = (8m + 8)/m^2
方法并不难,只需要考虑 sum of roots of quadratic equation (mx-4)^2 = 8x
如果是 x1,y1 的话 应该是
x1 + y1 = (8m + 4) + - 8*sqrt[2m+1]
第2part , 用 midpoint of AB = midpoint of OC 和 y1 + y2 = 8/m 来找
[ 本帖最后由 dunwan2tellu 于 20-10-2007 04:00 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 21-10-2007 09:23 AM
|
显示全部楼层
A family consisting of the father and seven other members. Each time a holiday trip is suggested, the father and the family members must accept or reject it. The probability that the father will accept a holiday trip is 4 / 5 . The other members make their decision independently, but the probability that each member agrees with the father is 3 / 4 . A holiday trip is agreed by the family members when the number of members who accept it exceeds the number of members who oppose it, or if the number of members who accept it is equal to the number who oppose it and the father is among those who accept it.
1 Find the probability that a holiday trip is agreed by the family members if the father oppose it
2 Find the probability that a holiday trip is agreed by the family members. |
|
|
|
|
|
|
|
发表于 21-10-2007 06:23 PM
|
显示全部楼层
原帖由 lavendar_o5 于 21-10-2007 09:23 AM 发表 
A family consisting of the father and seven other members. Each time a holiday trip is suggested, the father and the family members must accept or reject it. The probability that the father will ...
算到
1. 0.013
2. 0.792 |
|
|
|
|
|
|
|
发表于 21-10-2007 08:09 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 23-10-2007 10:34 AM
|
显示全部楼层
原帖由 flash 于 21-10-2007 06:23 PM 发表 
算到
1. 0.013
2. 0.792
请问如何算呢? |
|
|
|
|
|
|
| |
本周最热论坛帖子
|