|
University-数学讨论区-Linear Algebra, Advanced Algebra
[复制链接]
|
|

楼主 |
发表于 18-9-2007 06:40 PM
|
显示全部楼层
回复 #20 yaahoo 的帖子
刚刚翻回旧帖。。。
虽然最近很多人都在考试。。。但你的题目应该还有很多得空的人去看。。。
不想让它沉帖。。。。  |
|
|
|
|
|
|
|
发表于 8-10-2007 01:24 AM
|
显示全部楼层
明天就要考linear algebra的mid-term,范围是 linear system and Gaussian Elimination, Matrics and determinants, vector spaces, bases, linear independence and dimensions........这一科难在题目要求很多证明,烦死了!!!!现在非常烦着一道问题,有哪位高手可以帮帮忙吗?
Show that V 联W is a subspace of R^n if and only if W contains V or V contains W.
谢谢。。。。。。。 |
|
|
|
|
|
|
|
发表于 11-10-2007 06:35 PM
|
显示全部楼层
明天就要考linear algebra的mid-term,范围是 linear system and Gaussian Elimination, Matrics and determinants, vector spaces, bases, linear independence and dimensions........这一科难在题目要求很多证明,烦死了!!!!现在非常烦着一道问题,有哪位高手可以帮帮忙吗?
Show that V 联W is a subspace of R^n if and only if W contains V or V contains W.
谢谢。。。。。。。
题目少了资料,必须有 W 和 V is a subspace of R^n .
if :
WLOG let W contains V , then V U W = W
since W is a subspace of R^n , V U W is a subspace of R^n
only if :
Prove by contra-positive.
if W does not contain V and V does not contain W .
let x be an element in W\V and y be an element in V\W
then x+y is not an element in V U W .(why?试试证明)
so V U W is not a subspace of R^n . |
|
|
|
|
|
|
|
发表于 22-10-2007 11:32 PM
|
显示全部楼层
接下去应该是这样吧!:
x + y is an element in V U W and let x + y in V\W,
then x + y - x =y (! not in V, but in W)
~~~contradiction,
the proof is the same if we let x+y in W\V.......
谢谢你给的提示,可是成绩派回来了,40才拿25,海。。。。。。。失望,可是还好,成绩的mean是20,至少高一点点。。。。。。。 |
|
|
|
|
|
|
|
发表于 24-10-2007 06:57 PM
|
显示全部楼层
原帖由 distantstar 于 22-10-2007 11:32 PM 发表 
接下去应该是这样吧!:
x + y is an element in V U W and let x + y in V\W,
then x + y - x =y (! not in V, but in W)
~~~contradiction,
the proof is the same if we let x+y in W\V.......
谢 ...
如果要这样的话要考虑 x+y in V\W , x+y in W\V , x+y in (V n W) 3 个 case
不然就考虑 (i)x+y in W (ii) x+y in V 两个 case 也可以
i.e (i) if x+y in W => y = [(x+y) + (-1)x ] in W contradict ... y in V\W
请问 distantstar 在哪间大学求学?
[ 本帖最后由 dunwan2tellu 于 24-10-2007 06:59 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 26-10-2007 10:04 PM
|
显示全部楼层
我在新加坡国立大学,念物理,大学一年级,因为明年的量子力学需要到linear algebra,才拿这个科目的,想不到让我如此头痛。。。。。。 |
|
|
|
|
|
|
|
发表于 19-11-2007 04:25 AM
|
显示全部楼层
最近看见一道题目是这样子的:
If A is a diagonalizable nxn matrix, and each eigenvector x of A satisfies x'Ax = 0. Prove that A is a zero matrix.
我的做法是这样的:
Suppose b is an eigenvalue associated with a nonzero eigenvector x of A, therefore
x'Ax = 0
==>x'bx = 0
since x'x must be a 1 by 1 matrice with non-negative entries, and
x'x = 0 if and only if x is a zero matrix itself, we can conclude that
b = 0 since we have preassumed that x is a nonzero matrice.
Therefore, A = PDP^-1, and D=0, therefore A = 0.
我又一个问题:我在这里先假设x是一个非零向量是正确的吗?因为一个eigenvalue将会有无穷多个与它对应的eigenvector,因此,与其拿无意义的zero eigenvector来作证明,我就采用了nonzero的eigenvector来证明。可是,我却不大清楚我这种做法对不对。有那位高手可以提供意见? |
|
|
|
|
|
|
|
发表于 19-11-2007 01:40 PM
|
显示全部楼层
据我所知, eigenvector 的定义本来就是 non-zero 的 .
A nonzero vector x is an eigenvector of the square matrix A if there exists a nonzero number k such that Ax = kx .
不过我还是觉得题目有点怪。因为如果 A is diagonalizable , 那么 A 就不可能是 zero matrix .又或者是题目说 A is a diagonal matrix ?
[ 本帖最后由 dunwan2tellu 于 19-11-2007 02:18 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 19-11-2007 02:35 PM
|
显示全部楼层
题目的确是说A is diagonalizable.我觉得是因为zero nxn matrix 也是diagonalizable的,因为
任何一个invertible matrix P都可以满足
A= 0=PDP^-1 当D=0。 |
|
|
|
|
|
|
|
发表于 22-11-2007 12:52 PM
|
显示全部楼层
我想他之所以说 A is diagonalizable ,目的是要说明 A 有 n 个 linearly independent 的 eigenvector.如此一来每一个 corresponding 的 eigenvalue = 0 .那么 A = zero matrix .
的确,当 A = zero matrix 时,他的唯一一个 eigenvalue = 0 (geometric multiplicity = algebraic multiplicity = n ) 而又可以被 diagonalized 的 matrix . |
|
|
|
|
|
|
|
发表于 20-8-2008 11:08 PM
|
显示全部楼层
救命啊..
救命啊。。Abstract Algebra需要帮忙O。。在八月22号前要交哦。。
不好意思噢。。这些问题必须要用英文来写噢。。请大家帮帮忙。。谢谢。。越快越好。。
Abstract algebra..
1. Let G be a group with |G|= pq, where p>q are distinct primes.
(i) Show that G has normal Sylow p-subgroup.
(ii) If G is non- abelian, then show that q | (p-1) and calculate the number of Sylow q-subgroups in G.
2.Let G be a group with |G|=p²q, where p and q are distinct primes,show that G has a normal Sylow p-subgroups or a normal Sylow q- subgroup.
3.Let G be a group with |G|=p³q,where p and q are distinct primes. Show that either G has a normal Sylow p- or q- subgroup or |G|=24.
4.Let G be a group with |G|=p²q² where p>q are primes. If G does not have a unique normal Sylow p-subgroup, then determine the possible value(s) of |G|.
5.If |G|=pqr where p,q,r are primes, show whether G is simple.
6.If |G|<100 and G is non-abelian and simple, then show that|G|=60. |
|
|
|
|
|
|
|
发表于 25-9-2008 01:38 PM
|
显示全部楼层
linearly independent
linearly dependent
什么意思?
怎样证明?
好头痛的问题 |
|
|
|
|
|
|
|
发表于 2-10-2008 03:14 PM
|
显示全部楼层
linearly independent只是一种定义,并没有什么好证的。。。。。
请问你现在读的linear algebra,是停留在R^n,还是已经将概念扩展到general vector space? |
|
|
|
|
|
|
|
发表于 2-10-2008 06:45 PM
|
显示全部楼层
可能只是要知道在什么情况下,那个general vector space 还是什么之类的是不是independent吧 |
|
|
|
|
|
|
|
发表于 2-10-2008 09:08 PM
|
显示全部楼层
对不起,用英文解释会比较方便。。。。
Let V be a vector space over a field F. If {v1,v2,.......,vn} belongs to V^n, and {f1,f2,....fn} belongs F^n, then v1,v2,.....,vn are linearly independent if and only if
f1v1 + f2v2 + ...... +fnvn = 0 implies that f1 = f2 = f3 = .... = fn = 0
Note the two different 0 above. The previous one is the zero vector in V, while the second one is the 0 element in the field. |
|
|
|
|
|
|
|
发表于 3-10-2008 06:47 PM
|
显示全部楼层
向量空间(Vector Space)在未来有什么发展?
Linear System of Equation除了在物理上,航空上,经济上,还有什么可以发展的? |
|
|
|
|
|
|
|

楼主 |
发表于 5-10-2008 01:06 PM
|
显示全部楼层
回复 36# DADDY_MUMMY 的帖子
Vector Space也可以用在Coding Theory里。 |
|
|
|
|
|
|
|
发表于 6-10-2008 08:34 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 7-10-2008 12:55 PM
|
显示全部楼层
回复 38# woun 的帖子
Coding Theory基本上来说就是利用数学来查出error.
这里所谓的error是当 一个 message send 到 另一个地方时 ,
对方要确保这message是原本的message,
绝对不会有error,
若有error就要去查出来。
所以我们用数学来查出error 来。
Error 的发生是来自disturbances......
我们会用到linear algebra所学到的知识去encode and decode.
这个 Coding Theory 也是一个 field 来的。
另一个field 是 Cryptology.... |
|
|
|
|
|
|
|
发表于 7-10-2008 10:48 PM
|
显示全部楼层
江湖救急,请问如何避开大定理的方法去解以下问题:
Let T be a linear operator on a vector space V, and suppose that T^2 = T. Show that
ker(T) + Im (T) = V and the intersect of ker(T) and Im (T) is {0}.
后半部是很容易的,难得是在前半部。其实,问题如果考虑T(T-1) 这个polynomial,在根据一个很有用的proposition,就很容易解决了。可是,我想知道,有没有更简单,方便得方法? |
|
|
|
|
|
|
| |
本周最热论坛帖子
|