查看: 1356|回复: 5
|
Taylor series
[复制链接]
|
|
Taylor series 好难,
find the taylor series for x/(1-x) at x = 1
这题如何解决?
我这样做对吗?
let f(x) = x / 1-x
= x + 2x^2 + 3x^3 + .......
= sum form n = 1 to n = infinity (x^n)
可以解释何为taylor series 吗? |
|
|
|
|
|
|
|
发表于 9-9-2007 04:34 PM
|
显示全部楼层
你的题目有问题
f(x) is not continuous at x = 1 , 所以它不可能 differentiable at x = 1 .
Taylor Series 的主要中心围绕着 differentiable 的 function 走。如果他不能 differentiable at 那个 point , 那么它就不能写成 Taylor Series . |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 9-9-2007 05:00 PM
|
显示全部楼层
哦,
有一题, Evaluate the sum
the sum fr 0 ->infinity 1/(n!(n+2))
hint: integrate the taylor series of xe^x
我忘了, 什么是 integrate taylor series? |
|
|
|
|
|
|
|
发表于 9-9-2007 05:14 PM
|
显示全部楼层
原帖由 lyt87 于 9-9-2007 05:00 PM 发表 ![](http://chinese.cari.com.my/myforum/images/common/back.gif)
哦,
有一题, Evaluate the sum
the sum fr 0 ->infinity 1/(n!(n+2))
hint: integrate the taylor series of xe^x
我忘了, 什么是 i ...
先来找找看 f(x) = xe^x 的 Taylor expansion at x = 0 ;
不难得到 f(x) = x + x^2/1! + x^3/2! + x^4/3! + ..... + x^n/(n-1)! + ...
= Sum_{i=1 to infinity} x^i/(i-1)!
let g(x) = Integrate f(t) dt (from t=0 to t=x)
= Integrate Sum_{i=1 to infinity} t^i/(i-1)! dt
= Sum_{i=1 to infinity} Integrate t^i/(i-1)! dt
= Sum_{i=1 to infinity} x^(i+1)/[(i+1)(i-1)]
g(1) = sum fr 0 ->infinity 1/(n!(n+2))
因此只要你会 Integrate f(x) = xe^x from 0 to 1 ,你就可以找到你要的东西。
** g(1) = Integrate f(t) dt (from t=0 --> t=1) |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 9-9-2007 05:27 PM
|
显示全部楼层
为何= Sum_{i=1 to infinity} x^(i+1)/[(i+1)(i-1)]
而不是= Sum_{i=1 to infinity} x^(i+1)/[(i+1)(i-1)!]
integrate 后, ‘!’就不见了? |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 9-9-2007 05:45 PM
|
显示全部楼层
明白了,谢谢你!!!![](static/image/smiley/default/lol.gif) |
|
|
|
|
|
|
| |
本周最热论坛帖子
|