查看: 1467|回复: 3
|
求助,哪位高人帮帮忙
[复制链接]
|
|
If P(x) denotes a polynomial of degree n such that P ( k)= 1/k for k = 1, 2, ..., n+1, determine P(n+2). |
|
|
|
|
|
|
|
发表于 23-10-2005 05:35 PM
|
显示全部楼层
设 Q(x)=a[P(x)-1/x] , 那么当x = 1,2,3...,n+1 时
Q(1)=a[P(1)-1]=0 , (因为P(k)=1/k) ,Q(2)=0 , Q(3)=0 ......
Q(n+1)=0
由Factor theorem得知,当 Q(k)=0时,那么 x-k 一定是Q(x)的root.所以可得 Q(x)=a(x-1)(x-2)...(x-(n+1))
但是Q(x)=a[P(x)-1/x],所以 P(x)=(x-1)(x-2)...(x-(n+1))+1/x
带入 x=n+2 既可得到 P(n+2) = (n+1)! + 1/(n+2) |
|
|
|
|
|
|
|
发表于 9-3-2006 05:05 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 9-3-2006 05:39 PM
|
显示全部楼层
回顾了旧贴才发现有错误....
应该是设 Q(x) = x P(x) - 1 ,同理得到
Q(x) = a(x-1)(x-2)...(x-(n+1))
所以 xP(x)-1 = a(x-1)(x-2)...(x-(n+1))
x = 0 , ==> a = (-1)^n/ (n+1)!
==> P(n+2) = [(-1)^n + 1]/(n+2)
|
|
|
|
|
|
|
| |
本周最热论坛帖子
|