查看: 1200|回复: 5
|
Geometry problem, 会的请帮帮忙
[复制链接]
|
|
Find the shortest distance from the point (2,3,-1) to the plane defined by 2x+4y-z=-1
有谁会呢?
请帮帮忙!
谢谢! |
|
|
|
|
|
|
|
发表于 6-4-2005 04:47 PM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 6-4-2005 06:53 PM
|
显示全部楼层
辉弟 于 6-4-2005 04:47 PM 说 :
The answer is 4 units.
你是怎样得到这答案的呢?可以写下方式吗?
我只知道那个point不是在plane里. |
|
|
|
|
|
|
|
发表于 6-4-2005 10:47 PM
|
显示全部楼层
先找那个plane, S = 2x + 4y - z = -1 的 unit normal vector,
n = grad(S)/abs(grad(S)) = (2i + 4j - k)/sqrt(21)
然后,随便用一个在 plane S 的点,比如, Q(0,0,1), 跟点 P(2,3,-1) form 一个 vector,
QP = 2i + 3j - 2k
那么,the shortest distance from the point (2,3,-1) to the plane defined by 2x + 4y - z = -1 is given by
QP dot n = (2i + 3j - 2k) dot ((2i + 4j - k)/sqrt(21))
= (4 + 12 +2)/sqrt(21)
= 3.928 unit. |
|
|
|
|
|
|
|
楼主 |
发表于 7-4-2005 03:27 PM
|
显示全部楼层
fadeev_popov 于 6-4-2005 10:47 PM 说 :
先找那个plane, S = 2x + 4y - z = -1 的 unit normal vector,
n = grad(S)/abs(grad(S)) = (2i + 4j - k)/sqrt(21)
然后,随便用一个在 plane S 的点,比如, Q(0,0,1), 跟点 P(2,3,-1) form 一个 vector ...
谢谢! |
|
|
|
|
|
|
|
发表于 12-4-2005 03:18 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|