查看: 1221|回复: 14
|
FORM数学问题...帮帮忙
[复制链接]
|
|
1) when P(x) is divided by(x+3), the remainder is 2a. When P(x) is divided by(x-2), the remainder is -3a. Find the remainder when P(x) is divided by (x+3)(x-2).
2)If P(x)= (m+6)x^2+8x+m ,find the conditions on m such that P(x) > 0 for all values of x. |
|
|
|
|
|
|
|
发表于 26-3-2005 07:15 PM
|
显示全部楼层
Can you let me know the correct answer if my answer is wrong
[quote] chwk87 于 26-3-2005 02:25 AM 说 :
1) when P(x) is divided by(x+3), the remainder is 2a. When P(x) is divided by(x-2), the remainder is -3a. Find the remainder when P(x) is divided by (x+3)(x-2).
P(x)=(x+3)(x-2)Q(x)+Ax+B
Where Ax+B is remainder
When x=-3,the remainder is 2a When x=2,the remainder is -3a
therefore P(-3)=2a therefore P(2)=-3a
-3A+B=2a 2A+B=-3a_____(2)
B=2a+3A_____(1) Subtituting (1) into (2)
2A+(2a+3A)=-3a
A=-a,and B=2a+3(-a)
=-a
Therefore when P(x) is divided (x+3)(x-2),the remainder is -(ax+a). |
|
|
|
|
|
|
|
发表于 26-3-2005 09:24 PM
|
显示全部楼层
Harry7Kewell 于 26-3-2005 07:15 PM 说 :
[quote] chwk87 于 26-3-2005 02:25 AM 说 :
1) when P(x) is divided by(x+3), the remainder is 2a. When P(x) is divided by(x-2), the remainder is -3a. Find the remainder when P(x) is divided ...
What i cannot get a hold of is the degree of polynomial in the R (remainder).
How in the first place u know it's Ax + B and not some other higher or lower degree
like A or Ax^2 + Bx + C ...hope u dont mind my way of asking?
[ Last edited by katami on 27-3-2005 at 12:15 PM ] |
|
|
|
|
|
|
|
楼主 |
发表于 26-3-2005 11:41 PM
|
显示全部楼层
Harry7Kewell虽然你的答案是对的,但是就如katami所说的,你怎样知道P(X)的Kuasa 是3,它也可能是4,5.... |
|
|
|
|
|
|
|
发表于 27-3-2005 09:49 PM
|
显示全部楼层
希望可以幫到你
沒關係我是很樂意為你們解答。不過首先我想發問一個問題就是chwk87﹐你是中六生嗎﹖
讓我舉個例子吧。。。如果43除于7答案是6剩1。
那43就是7乘6+1﹐對嗎﹖
如果P(x) 除于(x+3)(x-2) 答案是Q(x) 剩R的話﹐
那P(x)就是(x+3)(x-2) 乘Q(x)+R啦!
P(x)=(x+3)(x-2)Q(x)+Ax+B!!!
這是我所知道的。致于你們的問題我就很難答到你了。
我只知道如果P(x)除于(x+/-a)的話R會是A而已﹔
如果P(x)除于(x+/-a)(x+/-b)的話R就是A(x)+B啦。
如果還不滿意的話可以參考Pelangi﹐Q&A(STPM)Paper1.OK!
至于chwk87,我已經解釋了你的問題了嗎﹖ |
|
|
|
|
|
|
|
楼主 |
发表于 27-3-2005 10:44 PM
|
显示全部楼层
是这样的吗?谢谢你的解释。至于第二题我已经找到答案了,不必劳烦各位了.Thanks |
|
|
|
|
|
|
|
发表于 28-3-2005 02:20 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-3-2005 06:03 PM
|
显示全部楼层
chwk87 于 26-3-2005 23:41 说 :
Harry7Kewell虽然你的答案是对的,但是就如katami所说的,你怎样知道P(X)的Kuasa 是3,它也可能是4,5....
Q(x)不一定是一个一次多项式
所以P(x)可以是任何次多项式
但是P(x)除以一个二次多项式
那么余式一定是一次多项式(不然的话她可以包括在Q(x)里面) |
|
|
|
|
|
|
|
发表于 28-3-2005 06:05 PM
|
显示全部楼层
chwk87 于 26-3-2005 02:25 说 :
2)If P(x)= (m+6)x^2+8x+m ,find the conditions on m such that P(x) > 0 for all values of x.
P(x)=(m+6)x^2+8x+m
要使P(x)恒正,其条件为
m+6 > 0
8^2 - 4m(m+6) < 0
解这两个不等式即可得到m的范围 |
|
|
|
|
|
|
|
发表于 28-3-2005 10:23 PM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 28-3-2005 11:33 PM
|
显示全部楼层
灰羊 于 28-3-2005 06:05 PM 说 :
P(x)=(m+6)x^2+8x+m
要使P(x)恒正,其条件为
m+6 > 0
8^2 - 4m(m+6) < 0
解这两个不等式即可得到m的范围
灰羊,你的方法简单多了,我怎么没想到呢?多谢你的解答。
Harry7Kewell,这是我的解答,不过长些了。
(m+6)x^2+8x+m>0
x^2+8m/(m+6)+ m/(m+6) > 0
Dgn penyempurnaan kuasa dua
[x+4m/(m+6)]^2 -16/(m+6)^2+m/(m+6) > 0
[x+4m/(m+6)]^2 +(m^2+6m-16)/(m+6)^3> 0
[x+4m/(m+6)]^2 always>0 ,so consider(m^2+6m-16)/(m+6)^3> 0
只要解决(m^2+6m-16)/(m+6)^3> 0就可以了。
[ Last edited by chwk87 on 28-3-2005 at 11:38 PM ] |
|
|
|
|
|
|
|
发表于 29-3-2005 09:02 PM
|
显示全部楼层
謝謝﹗明白了﹐不過你還是打錯了字。。。不是(m+6)^3而是(m+6)^2。 |
|
|
|
|
|
|
|
楼主 |
发表于 29-3-2005 09:54 PM
|
显示全部楼层
是(m+6)^3才对,你看看一下
[x+4m/(m+6)]^2 -16/(m+6)^2+m/(m+6) > 0
-16/(m+6)^2+m/(m+6)=(m^2+6m-16)/(m+6)^3
是不是。 |
|
|
|
|
|
|
|
发表于 30-3-2005 05:41 PM
|
显示全部楼层
-16/(m+6)^2+m/(m+6)=(m^2+6m-16)/(m+6)^3
不是吧。。。如果是cube的话。。。那就会如下:
-16(m+6) m(m+6)^2
[---------] +[---------]
(m+6)^3 (m+6)^3
= -16m-96+m(m+6)^2
[------------------]
(m+3)^3
绝对不是你所说的(m^2+6m-16)/(m+6)^3
你所给的答案是来自(m+6)^2的。。。你再试试看吧! |
|
|
|
|
|
|
|
楼主 |
发表于 30-3-2005 11:13 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|