查看: 1894|回复: 3
|
Polynomial 的问题
[复制链接]
|
|
When a polynomian f(x) is divided by (x-a) and (x-b), the remainder are f(a) and f(b) respectively.
Find the remainder when f(x) is divided by (x-a)(x-b).
请问要怎么做 ?? |
|
|
|
|
|
|
|
发表于 13-8-2010 12:18 AM
|
显示全部楼层
回复 1# 外星護法
when f(x) divided by (x-a)(x-b), it gives a remainder Ax+B where A and B are constants.
f(x)=(x-a)(x-b)q(x)+Ax+B (where q(x) is the quotient)
when x=a,the remainder is
f(a)=Aa+B
when x=b,the remainder is
f(b)=Ab+B
差不多是酱的东西吧。。
不是很确定答案。。。 |
|
|
|
|
|
|
|
发表于 13-8-2010 09:54 AM
|
显示全部楼层
When a polynomian f(x) is divided by (x-a) and (x-b), the remainder are f(a) and f(b) respectively.
Find the remainder when f(x) is divided by (x-a)(x-b).
请问要怎么做 ??
方法一:
设 f(x) = (x-a)(x-b)q(x) + Ax+B
f(a) = Aa+B ——(1)
f(b) = Ab+B ——(2)
(1) - (2)
A(a-b) = f(a)-f(b)
A = [f(a)-f(b)]/(a-b)
B = [af(b)-bf(a)]/(a-b)
∴ 所求余式为 {[f(a)-f(b)]x + [af(b)-bf(a)]}/(a-b)。
方法二:
设 f(x) = (x-a)(x-b)q(x) + A(x-a)+f(a)
f(b) = A(b-a)+f(a)
A = [f(a)-f(b)]/(a-b)
∴ 所求余式为 [f(a)-f(b)](x-a)/(a-b) + f(a)
即 {[f(a)-f(b)]x + [af(b)-bf(a)]}/(a-b)。
方法三:
设 f(x) = (x-a)(x-b)q(x) + A(x-b)+f(b)
f(a) = A(a-b)+f(b)
A = [f(a)-f(b)]/(a-b)
∴ 所求余式为 [f(a)-f(b)](x-b)/(a-b) + f(b)
即 {[f(a)-f(b)]x + [af(b)-bf(a)]}/(a-b)。 |
|
|
|
|
|
|
|

楼主 |
发表于 13-8-2010 06:15 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|