查看: 1440|回复: 1
|
Calculus~
[复制链接]
|
|
Let function f define as f(x+y)=f(x)+f(y) for all real values of x and y.
Prove that (a)f(0)=0
(b) f is an odd function
(c) If f'(0)=2 find the value of f'(3)
[ 本帖最后由 MaoMao92 于 22-3-2009 07:13 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 22-3-2009 10:39 PM
|
显示全部楼层
回复 1# MaoMao92 的帖子
1) let x=0
f(x+y)=f(x)+f(y)
f(y)=f(0)+f(y)
f(0)=0
2)let x+y=0
x=-y
f(x+y)=f(x)+f(y)
f(0)=f(x)+f(-x)
f(x)=-f(-x)
f is an odd function
3)f(x+y)=f(x)+f(y)
f'(x+y)(1+dy/dx)=f'(x)+f'(y)(dy/dx)
let x+y=0 and x=3, y=-3
f'(0)(1+dy/dx)=f'(3)+f'(-3)(dy/dx)
but f(x)=-f(-x)
f'(x)=f'(-x) and f'(0)=2
2(1+dy/dx)=f'(3)+f'(3)(dy/dx)
f'(3)=2
中文![](static/image/smiley/default/icon_redface.gif) |
|
|
|
|
|
|
| |
本周最热论坛帖子
|