|
发表于 2-1-2009 10:07 PM
|
显示全部楼层
回复 160# bell_25 的帖子
1.x^4=16
x^2=4, x^2=-4
x=2,-2, 2i, -2i
2.(k+1)x^2 + (2k+3)x + (k+2) = 0
用b^-4ac
(2k+3)^2-4(k+1)(k+2)=4k^2+12k+9-4(k^2+3k+2)
=1
所以 b^2-4ac>0
k=/=-1 因为 coefficient of x^2=/=0
3. y = (1-kx) / (1+x^2)
y(1+x^2) =(1-kx)
yx^2+kx+y-1=0
用b^2-4ac>=0
...
4. x^2 + 17 ≤ 7x + (11/x)
(x^3 - 7x^2 + 17x - 11)/x<=0
(x-1)(x^2 - 6x + 11)/x<=0
x^2 - 6x + 11永远〉0
而(x-1)x<0
所以0 < x ≤ 1 |
|
|
|
|
|
|
|
发表于 2-1-2009 10:24 PM
|
显示全部楼层
回复 161# 笨蛋一个 的帖子
谢谢你哦。。谢谢你提供的答案。。感激不尽!!!!
原来就这样哦。。
我都把它们复杂化啦。。
可是,我还是有疑问哦。。
就是第2题。。
虽然是已经拿到k ≠ -1 这个答案了。。
但是要怎样prove k ∈ R 呢? |
|
|
|
|
|
|
|
发表于 3-1-2009 03:50 PM
|
显示全部楼层
回复 162# bell_25 的帖子
k在b^2-4ac已经被割掉了,
就是说k没有影响这个equation了。
所以k ∈ R |
|
|
|
|
|
|
|
发表于 3-1-2009 08:17 PM
|
显示全部楼层
回复 163# 笨蛋一个 的帖子
哦。。
原来如此。。
我明白了。。谢谢你。。
[ 本帖最后由 bell_25 于 3-1-2009 08:56 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 8-3-2009 04:39 PM
|
显示全部楼层
嗯。。我又有2道问题发问了。。是关于coordinate geometry的。。
希望你们可以帮帮我。。谢谢。。
1. Points A and C have coordinates(-1,2) and (9,7) respectively. A rectangle ABCD has AC as a diagonal. Calculate the possible coordinates of B and D if the length of AB is 10 units. 【Answer: B(5,10),D(3,-1) or B(9,2),D(-1,7) 】
2. A square has vertex at the point (5,-2) and a diagonal along the straight line 3x-2y-6=0. Find the equation of the second diagonal of the rectangle and the coordinate of the other vertices. 【Answer: 2x+3y=4; (4,3), (-1,2), (0,-3) 】 |
|
|
|
|
|
|
|
发表于 8-3-2009 05:40 PM
|
显示全部楼层
原帖由 bell_25 于 8-3-2009 04:39 PM 发表
1. Points A and C have coordinates(-1,2) and (9,7) respectively. A rectangle ABCD has AC as a diagonal. Calculate the possible coordinates of B and D if the length of AB is 10 units. 【Answer: B(5,10),D(3,-1) or B(9,2),D(-1,7) 】
let coordinates of B be (x, y).
Since AC is diagonal,
(AC)^2 = (AB)^2 + (AD)^2
(AC)^2 = (-1 - 9)^2 + (2 - 7)^2
= 100 + 25
= 125
125 = (10)^2 + (AD)^2
(AD)^2 = 125 - 100
= 25
AD = 5
AB = 10
(-1 - x)^2 + (2 - y)^2 = 100 --- (1)
x^2 + 2x + 1 + 4 - 4y + y^2 = 100
x^2 + y^2 + 2x - 4y - 95 = 0 --- (2)
Since BC = AD,
(9 - x)^2 + (7 - y)^2 = 5^2
81 - 18x + x^2 + 49 - 14y + y^2 = 25
x^2 + y^2 - 18x - 14y + 105 = 0 --- (3)
(2) - (3):
20x + 10y - 200 = 0
2x + y - 20 = 0
y = -2x + 20
Substitute y = -2x - 20 into (1):
(-1 - x)^2 + (2 - y)^2 = 100
(-1 - x)^2 + (2 + 2x - 20)^2 = 100
(-1 - x)^2 + (2x - 18)^2 = 100
x^2 + 2x + 1 + 4x^2 - 72x + 324 = 100
5x^2 - 70x + 225 = 0
x^2 - 14x + 45 = 0
(x - 9)(x - 5) = 0
x = 9 or x = 5
When x = 9,
y = -2(9) + 20
= 2
When x = 5,
y = -2(5) + 20
= 10
Hence, (9, 2) or (5, 10) is the coordinates of B.
D點讓你試試看解~ |
|
|
|
|
|
|
|
发表于 8-3-2009 06:30 PM
|
显示全部楼层
原帖由 bell_25 于 8-3-2009 04:39 PM 发表
2. A square has vertex at the point (5,-2) and a diagonal along the straight line 3x-2y-6=0. Find the equation of the second diagonal of the rectangle and the coordinate of the other vertices. 【Answer: 2x+3y=4; (4,3), (-1,2), (0,-3) 】
Subtitute the point (5, -2) into the equation 3x - 2y - 6 = 0,
3(5) - 2(-2) - 6 = 0
15 + 4 - 6 = 0
13 = 0
Since the point does not statisfy the equation of the diagonal, we know that this point is one of the point at the another diagonal.
3x - 2y - 6 = 0
2y = 3x - 6
y = (3/2)x - 3
Since the two diagonals in a square are perpendicular to each other,
Gradient of the another diagonal = -1/(3/2)
= -2/3
Equation of the another diagonal:
y - (-2) = (-2/3)(x - 5)
3(y + 2) = -2x + 10
3y + 2x = -6 + 10
2x + 3y = 4
let the centre of the square be O, and the all the vertex of the square be A, B, C, D, where the coordinate of A is (5, -2).
The positions of A, B, C, D and O are shown as below:
D ------------ C
| |
| O |
| |
B ------------- A
Finding the coordinates of O:
3x - 2y - 6 = 0 --- (1)
2x + 3y = 4 --- (2)
2(1) - 3(2):
-4y - 9y - 12 = -12
-13y = 0
y = 0
When y = 0,
3x - 2(0) - 6 = 0
3x = 6
x = 2
Hence the coordinates of O is (2, 0).
O is the midpoint of AD
(2, 0) = [(5 + x_D )/2, (-2 + y_D)/2]
(5 + x_D )/2 = 2
x_D = -1
(-2 + y_D)/2 = 0
y_D = 2
D(-1, 2)
Since AO = OC,
(5 - 2)^2 + (-2 - 0)^2 = (x_C - 2)^2 + (y_C - 0)^2
9 + 4 = (x_C)^2 - 4(x_C) + 4 + (y_C)^2
(x_C)^2 + (y_C)^2 - 4(x_C) - 9 = 0
3x - 2y - 6 = 0
y = (3/2)x - 3
Subsitute the diagonal equation 3x - 2y - 6 = 0 into the equation above,
(x_C)^2 + [(3/2)(x_C) - 3]^2 - 4(x_C) - 9 = 0
(x_C)^2 + [(9/4)(x_C)^2 - 9(x_C) + 9] - 4(x_C) - 9 = 0
4(x_C)^2 + 9(x_C)^2 - 36(x_C) + 36 - 16(x_C) - 36 = 0
13(x_C)^2 - 52(x_C) = 0
(x_C)^2 - 4(x_C) = 0
(x_C)[(x_C) - 4] = 0
(x_C) = 0 or (x_C) = 4
Since there are two distinct value, one of the value should belong to B.
Accroding to the diagram, let x_B = 0
When x_B = 0,
y = (3/2)0 - 3
= -3
B(0, -3)
When x_C = 4,
y = (3/2)(4) - 3
= 6 - 3
= 3
C(4, 3)
[ 本帖最后由 Ivanlsy 于 8-3-2009 10:18 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 8-3-2009 06:53 PM
|
显示全部楼层
回复 167# Ivanlsy 的帖子
谢谢你。。。我明白了。。原来是这样的。。
好完整的解答哦。。
感激不尽。。 |
|
|
|
|
|
|
|
发表于 8-3-2009 09:30 PM
|
显示全部楼层
不好意思。。。刚发现不明白的地方。。。
这是第2题的问题。。。
原帖由 Ivanlsy 于 8-3-2009 06:30 PM 发表
Since AC = CD,
(5 - x_C)^2 + (-2 - y_C)^2 = (-1 - x_C)^2 + (2 - y_C)^2
25 - 10(x_C) + (x_C)^2 + 4 + 4(y_C) + (y_C)^2 = 1 - 2(x_C) + (x_C)^2 + 4 - 4(y_C) + (y_C)^2
8(x_C) - 8(y_C) - 24 = 0
x_C - y_C - 3 = 0
y_C = x_C - 3.......
嗯。。不好意思哦。。
那个 - 2(x_C)不是应该是2(x_C)吗?
所以,整个equation应该是
25 - 10(x_C) + (x_C)^2 + 4 + 4(y_C) + (y_C)^2 = 1
+ 2(x_C) + (x_C)^2 + 4 - 4(y_C) + (y_C)^2
对吗?
如果是这样。。那么接下来的equation就应该是
12(x_C) - 8(y_C) - 24 = 0
3x_C -2 y_C - 6 = 0
Subsitute the equation above into the diagonal equation 3x - 2y - 6 = 0,
不就是拿到0吗??
那该怎样solve了再拿到point C 呢??
谢谢哦。。 |
|
|
|
|
|
|
|
发表于 8-3-2009 10:12 PM
|
显示全部楼层
嗯。。不好意思。。还有一题。。
不是很明白。。
找过了参考书也没有这个例子。。
所以只好在这里求助。。。
题目是。。。
differentiate ln( 2x- x^2 +5 )
谢谢。。。 |
|
|
|
|
|
|
|
发表于 8-3-2009 10:22 PM
|
显示全部楼层
原帖由 bell_25 于 8-3-2009 10:12 PM 发表
differentiate ln( 2x- x^2 +5 )
d[ln(2x - x^2 + 5)]/dx = (2 - 2x)/(2x - x^2 + 5)
注:d[ln f(x)]/dx = f'(x)/f(x) |
|
|
|
|
|
|
|
发表于 8-3-2009 10:25 PM
|
显示全部楼层
回复 169# bell_25 的帖子
誤打誤撞竟然會對?
已修改,謝謝通知。 |
|
|
|
|
|
|
|
发表于 9-3-2009 01:31 AM
|
显示全部楼层
原帖由 Ivanlsy 于 8-3-2009 10:22 PM 发表
d[ln(2x - x^2 + 5)]/dx = (2 - 2x)/(2x - x^2 + 5)
注:d[ln f(x)]/dx = f'(x)/f(x)
哦。。我做到的答案跟你一样呢。。
哈哈。。那就应该是老师的答案错了。。
谢谢你的解答。。 |
|
|
|
|
|
|
|
发表于 9-3-2009 01:32 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 9-3-2009 02:34 PM
|
显示全部楼层
又有differentiation的问题了。。
我尝试了蛮久。。也用了老师教我的method..
但还是solve不到。。
题目是。。
Given that y= (cos x - sin x ) / ( cos x + sin x ) ,
show that (d^2 y / dx^2 ) + 2y( dy / dx ) = 0.
谢谢。。 |
|
|
|
|
|
|
|
发表于 9-3-2009 04:37 PM
|
显示全部楼层
原帖由 bell_25 于 9-3-2009 02:34 PM 发表
Given that y= (cos x - sin x ) / ( cos x + sin x ) ,
show that (d^2 y / dx^2 ) + 2y( dy / dx ) = 0
y = (cos x - sin x) / (cos x + sin x)
dy/dx = [(cos x + sin x)(-sin x - cos x) - (cos x - sin x)(-sin x + cos x)] / (cos x + sin x)^2
= [-(cos x + sin x)(cos x + sin x) - (cos x - sin x)(cos x - sin x)] / (cos x + sin x)^2
= [-(cos x + sin x)^2 - (cos x - sin x)^2] / (cos x + sin x)^2
= [-(cos x + sin x)^2 / (cos x + sin x)^2] + [- (cos x - sin x)^2/(cos x + sin x)^2]
= -1 + [-(y)^2]
= -1 - y^2
(d^2)y/d(x^2) = d(-1)/dx - d(y^2)/dx
= 0 - 2y(dy/dx)
= -2y(dy/dx)
(d^2)y/d(x^2) + 2y(dy/dx) = -2y(dy/dx) + 2y(dy/dx)
= 0 |
|
|
|
|
|
|
|
发表于 9-3-2009 08:12 PM
|
显示全部楼层
回复 176# Ivanlsy 的帖子
哦。。明白了。。
谢谢。。 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|