查看: 1463|回复: 7
|
征求数学比赛解答
[复制链接]
|
|
发表于 17-11-2008 10:22 PM
|
显示全部楼层
28. A regular octahedron has eight triangular faces and all sides the same length. A portion of a
regular octahedron of volume 120 cm3 consists of that part of it which is closer to the top vertex
than to any other one. In the diagram, the outside part of this volume is shown shaded, and it
extends down to the centre of the octahedron. What is the volume, in cubic centimetres, of
this unusually shaped portion?
由于对称性: 答案 = 120/6 = 20 |
|
|
|
|
|
|
|
对于以下问题,我的解法过于繁复,可以说是“笨”。现在征求较为简洁的方法。
08年华罗庚比赛
13、将数字1到12分为3组,每组4个数。考虑各组数字之和。若这些和中有一个唯一的最小数,求这些最小数的可能个数。
A 最多15个 B 在16和20之间 C 最少30个 D 5 E 以上皆非
07年成大
7、若0<x<1且x^2007 -8x +7=0 ,求1+x+x^2+x^3+...+x^2007。
A 6 B 7 C 8 D 多于一个答案 E 以上皆非
07年AMC
21. There are four lifts in a building. Each makes three stops, which do not have to
be on consecutive floors or include the ground floor. For any two floors, there is
at least one lift which stops on both of them. What is the maximum number of
floors that this building can have?
(A) 4 (B) 5 (C) 6 (D) 7 (E) 12
不明白“For any two floors, there is at least one lift which stops on both of them”
05年AMC
28. A regular octahedron has eight triangular faces and all sides the same length. A portion of a
regular octahedron of volume 120 cm3 consists of that part of it which is closer to the top vertex
than to any other one. In the diagram, the outside part of this volume is shown shaded, and it
extends down to the centre of the octahedron. What is the volume, in cubic centimetres, of
this unusually shaped portion?
问题请参考http://www.chiuchang.org.tw/modu ... /viewcat.php?cid=22
答案是20 |
|
|
|
|
|
|
|
发表于 16-11-2008 06:04 PM
|
显示全部楼层
原帖由 朗木寺 于 16-11-2008 03:17 PM 发表 ![](http://cforum5.cari.com.my/images/common/back.gif)
对于以下问题,我的解法过于繁复,可以说是“笨”。现在征求较为简洁的方法。
07年AMC
21. There are four lifts in a building. Each makes three stops, which do not have to
be on consecutive floors or include the ground floor. For any two floors, there is
at least one lift which stops on both of them. What is the maximum number of
floors that this building can have?
(A) 4 (B) 5 (C) 6 (D) 7 (E) 12
不明白“For any two floors, there is at least one lift which stops on both of them”
意思说至少要有一架升降机停留在任何两层楼。这题的答案应该是 5。 |
|
|
|
|
|
|
|
发表于 17-11-2008 05:47 PM
|
显示全部楼层
07年成大
7、若0<x<1且x^2007 -8x +7=0 ,求1+x+x^2+x^3+...+x^2007。
A 6 B 7 C 8 D 多于一个答案 E 以上皆非
曲线 y = x^2007 与直线 y = 8x - 7 有两个交点。
所以 x^2007 - 8x +7 = 0 有两个实数解。
一解为 x = 1,另一解 x ∈ (0, 1)。
x^2007 - 8x +7 = 0
x^2007 - 1 = 8x - 8
(x^2007 - 1)/(x - 1) = 8
1+x+x^2+x^3+...+x^2006 = 8
1+x+x^2+x^3+...+x^2006+x^2007 = 8 + x^2007
0 < x < 1
0 < x^2007 < 1
∴ 8 < 1+x+x^2+x^3+...+x^2006+x^2007 < 9
答案:E 以上皆非 |
|
|
|
|
|
|
|
发表于 17-11-2008 08:11 PM
|
显示全部楼层
08年华罗庚比赛
13、将数字1到12分为3组,每组4个数。考虑各组数字之和。若这些和中有一个唯一的最小数,求这些最小数的可能个数。
A 最多15个 B 在16和20之间 C 最少30个 D 5 E 以上皆非
这些最小的和有可能是10~25共16个。
所以答案是:E 以上皆非 |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 17-11-2008 11:54 PM
|
显示全部楼层
谢谢各位!
“意思说至少要有一架升降机停留在任何两层楼。这题的答案应该是 5。”
可否提供说明?
07年成大
7、若0<x<1且x^2007 -8x +7=0 ,求....这题我费了好大的功夫证明x介于7/9和8/9之间(如果没有记错数字),x^2007会很接近0,所以我很犹豫要不要选择8作为答案,因为不喜欢成大总是“没有答案”。
无论如何谢谢大家!
[ 本帖最后由 朗木寺 于 18-11-2008 12:29 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 18-11-2008 09:07 PM
|
显示全部楼层
成大的“没有答案”是主办当局为自保而设的 ![](static/image/smiley/default/biggrin.gif) |
|
|
|
|
|
|
|
发表于 19-11-2008 12:50 AM
|
显示全部楼层
原帖由 朗木寺 于 17-11-2008 11:54 PM 发表 ![](http://cforum4.cari.com.my/images/common/back.gif)
“意思说至少要有一架升降机停留在任何两层楼。这题的答案应该是 5。”
可否提供说明?
07年成大
7、若0
我只是运用 graph theory 来解这题。以楼为点,以连接为线,如此只能产生 12 线,最多只能达到 C5,所以最多只有五楼。
[ 本帖最后由 flash 于 19-11-2008 12:57 AM 编辑 ] |
|
|
|
|
|
|
| |
本周最热论坛帖子
|