佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

查看: 1062|回复: 2

有更快的办法计算吗?

[复制链接]
发表于 30-8-2007 01:32 AM | 显示全部楼层 |阅读模式
1 + 1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 + 2 + 3 + 4) + ... + 1/(1+2+3+4+5+6+7+8+9+10)
回复

使用道具 举报


ADVERTISEMENT

发表于 30-8-2007 02:05 PM | 显示全部楼层
1 + 2 + 3 + ... ... + n = n(n+1)/2

1/(1 + 2 + 3 + ... ... + n) = 2/n(n+1)

而 2/n(n+1) = 2/n - 2/(n+1)

∴ 1 + 1/(1+2) + 1/(1+2+3) + ... ... + 1/(1+2+3+4+5+6+7+8+9+10)
= [2/1 - 2/2] + [2/2 - 2/3] + [2/3 - 2/4] + ... ... + [2/10 - 2/11]
= 2 - 2/11
= 20/11

通项公式:
  1 + 1/(1+2) + 1/(1+2+3) + ... ... + 1/(1+2+3+... ...+n)
= [2/1 - 2/2] + [2/2 - 2/3] + [2/3 - 2/4] + ... ... + [2/n - 2/(n+1)]
= 2 - 2/(n+1)
= 2n/(n+1)

当 n = 10,
  1 + 1/(1+2) + 1/(1+2+3) + ... ... + 1/(1+2+3+4+5+6+7+8+9+10)
= 2×10/(10+1)
= 20/11
回复

使用道具 举报

发表于 30-8-2007 02:15 PM | 显示全部楼层
再教你一个方法,就是不要贪心,一步一步来。

1 = 2/2
1 + 1/3 = 4/3
1 + 1/3 + 1/6 = 4/3 + 1/6 = 9/6 = 3/2 = 6/4
1 + 1/3 + 1/6 + 1/10 = 3/2 + 1/10 = 16/10 = 8/5
1 + 1/3 + 1/6 + 1/10 + 1/15 = 8/5 + 1/15 = 25/15 = 5/3 = 10/6
.
.
.

归纳出:
1 + 1/3 + 1/6 + ... ... + 1/(1+2+3+... ...+n) = 2n/(n+1)
∴ 1 + 1/3 + 1/6 + ... ... + 1/(1+2+3+... ...+10) = 20/11
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 11-2-2025 12:57 PM , Processed in 0.107827 second(s), 24 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表