|
证明(1+X)^2n的展开式的中间一项是
{[1*3*5......(2n-1)](2x)^n}/n!
谢谢~! |
|
|
|
|
|
|
|
发表于 9-4-2007 09:44 AM
|
显示全部楼层
他的系数应该是 2n C n = (2n!)/(n!n!)
不过我怎么看都不是 {[1*3*5......(2n-1)](2x)^n}/n! |
|
|
|
|
|
|
|
发表于 9-4-2007 12:24 PM
|
显示全部楼层
(2n)!/(n!n!) = ( 2n * 2n-2 * 2n - 4 * ......) * (2n-1 * 2n-3 * * 2n-5 .......) / (n!n!)
= { [2(n) * 2(n-1) * 2(n-2) * ....2(2) * 2(1)] * [1*3*5......(2n-1)] } / (n!n!)
= { 2^n * [1*2*3*.....n] * [1*3*5......(2n-1)] } / (n!n!)
= { 2^n * [n!] * [1*3*5......(2n-1)] } / (n!n!)
= { [1*3*5......(2n-1)] (2x)^n } / n! |
|
|
|
|
|
|
|
发表于 9-4-2007 12:34 PM
|
显示全部楼层
( 1 + X)^m = sum { (m C i) X^i} for i = 0 to m
m C i = m! / { (m-i)! * i! }
(1+X)^2n的展开式的中间一项的系数 = X^n 的系数
X^n 的系数 = m C i , m = 2n , i = n
= 2n C n
= (2n)! / {(2n-n)! n!}
= (2n)! / ( n! n! )
= 帖 #3 的答案。 |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 9-4-2007 04:05 PM
|
显示全部楼层
请问如何把(2n-1 * 2n-3 * * 2n-5 .......)演变成[1*3*5......(2n-1)]? |
|
|
|
|
|
|
|
发表于 9-4-2007 04:32 PM
|
显示全部楼层
哈哈!
对不起, 我应该写清楚一点。
(2n)! = (2n) * (2n-1) * (2n-2) * (2n-3) * (2n-4) * (2n-5) * .......6 * 5 * 4 * 3 * 2 * 1
重新排过,分成双数和单数。
(2n)! = { (2n) * (2n-2) * (2n-4) * ...* 6 * 4 * 2 } * { (2n-1) * (2n-3) * (2n-5) * ... * 5 * 3 * 1}
( 2n-1 * 2n-3 * * 2n-5 .......) 是 {(2n-1) * (2n-3) * (2n-5) * ..... (5) * (3) * (1) }
反过来写, 就变成:[1*3*5...*(2n-5)*(2n-3)*(2n-1)] |
|
|
|
|
|
|
|
![](static/image/common/ico_lz.png)
楼主 |
发表于 9-4-2007 07:17 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|