查看: 2488|回复: 40
|
Pre-U数学难题...
[复制链接]
|
|
有些pre-U的数学题不是很会做,请问各位大大可以帮帮小弟忙吗?
1.Given an equation 0.99x=sinx has exactly one root in the interval
0<x<1/2pai ,verify by calculation that this root lies between 0.1 and0.5
note:pai=angle in radian,cant type that symbol ^_^"
2.With origin O,the points A,B and C representing the complex number -1+3i,2+i and 1/5+7/5i respectively.State an equation relating the lengths OA,OB and OC.
3.(i) By sketching a suitable pair of graphs,show that the equation
cosec x = x/2 + 1 where x is in radians,has a root in the interval 0<x<0.5pai (roughly是怎样的graph?)
(ii)Verify,by calculation,that this root lies between 0.5 and 1.
4. x^3-x-3=0 has one real root,alpha
show that alpha lies between 1 and 2
5. 2x^3+x^2+25=0 has 1 real root and two complex roots.Verify that 1+2i is one of the complex roots.(请问是ganti 1+2i进去然后=0来bukti吗?)
[ 本帖最后由 :.孤心.: 于 2-6-2006 06:57 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 30-3-2006 10:21 PM
|
显示全部楼层
可以用這個方法嗎?
方程式f(x)=0
若f(a)*f(b)<0,則方程式f(x)=0在(a,b)中有根 |
|
|
|
|
|
|
|
楼主 |
发表于 31-3-2006 12:52 AM
|
显示全部楼层
原帖由 灰羊 于 30-3-2006 10:21 PM 发表
可以用這個方法嗎?
方程式f(x)=0
若f(a)*f(b)<0,則方程式f(x)=0在(a,b)中有根
不是很明白...
为什么f(a)*f(b)<0,則方程式f(x)=0在(a,b)中有根呢?
如果f(a)*f(b) > or = 0的话又会怎样...? |
|
|
|
|
|
|
|
发表于 31-3-2006 01:52 PM
|
显示全部楼层
用graph 来看的话,如果 f(x) 在 a < x < b 之间有根,则
f(a) * f(b) < 0 .
Example : f(x) = x^2 + 4x + 3
欲求 f(x) = 0 的根,我们可以看到是 -1 , -3 . 以graph 来看的话是 U shape , 而 -1 < x < -3 的范围时,f(x)<0 , otherwise 则 >=0 .
那么我们知道 -1.5 到 -0.5 之间有 root ( ie : x = -1 ) 所以
f(-1.5) * f(-0.5) < 0 ( 因为 f(-1.5) > 0 , f(-0.5) < 0 , 乘起来就 <0 ) |
|
|
|
|
|
|
|
楼主 |
发表于 31-3-2006 05:58 PM
|
显示全部楼层
hmm...我想这类型的题目我应该明白了...
请问还有谁可以帮我解答其他题目吗? |
|
|
|
|
|
|
|
发表于 31-3-2006 06:08 PM
|
显示全部楼层
Complex Number 的那题,我觉得是
-1+3i -> y = -x/3
2+i -> y = x/2
1/5 + 7/5i --> y = 7x
本人觉得是用Cartesan Plane 的coordinate 来找 equation . ie : if p+qi 是一个complex plane 的点,则equation 是 y = q/p * x
不过也有可能不是....有没有人有其他意见?
3(i) cosec x 的graph 是 cos x 的reciprocal (大概是 u,n,u,n 酱的形状。可以试试google) 。画 cosec x 和 x/2 + 1 的graph ...
5)2 method :
(i) 直接ganti 进去,看是否= 0
(ii)如果 1+2i 是 root ,则 x = 1+2i <==> x-1 = 2i <==> x^2 -2x +5=0
要证明是否是 2x^3+x^2+25=0 的 root ,则可以用 Long division 来除看是否
x^2-2x+5 可以整除 2x^3+x^2+25 .可以的话就是root ,不能就不是。
第5题有些修改...
[ 本帖最后由 dunwan2tellu 于 31-3-2006 06:22 PM 编辑 ] |
|
|
|
|
|
|
|
楼主 |
发表于 7-4-2006 09:25 AM
|
显示全部楼层
3(i) 请问是y-axis=sinx吗?然后需不需要在他们的共同点画一条线连接起来...? |
|
|
|
|
|
|
|
发表于 7-4-2006 01:44 PM
|
显示全部楼层
原帖由 :.孤心.: 于 7-4-2006 09:25 AM 发表
3(i) 请问是y-axis=sinx吗?然后需不需要在他们的共同点画一条线连接起来...?
在同一个graph paper 画两个graph .
y = cosec x
y = x/2 + 1 |
|
|
|
|
|
|
|
发表于 10-4-2006 02:45 AM
|
显示全部楼层
我用Geometer Sketchpad 将两个equation画了出来。
你看看!
[ 本帖最后由 tayks88 于 10-4-2006 02:46 AM 编辑 ] |
|
|
|
|
|
|
|
发表于 10-4-2006 03:23 PM
|
显示全部楼层
tayks88 网友,谢谢你的 graph . 没想到你有 GSP ,想必父母是教师吧?我一直想在市场上买 GSP ,不知哪里有卖? |
|
|
|
|
|
|
|
发表于 10-4-2006 07:56 PM
|
显示全部楼层
3(i) cosec(x) = x/2 + 1
1/sin(x) = (x+2)/2
sin(x) = 2/(x+2)
graph y1 = sin(x)
graph y2 = 2/(x+2) |
|
|
|
|
|
|
|
楼主 |
发表于 10-4-2006 09:29 PM
|
显示全部楼层
谢谢楼上几位...
about the graph...
if我想kee020041酱画以下两个graph也是可以的吗..?
graph y1 = sin(x)
graph y2 = 2/(x+2)
|
|
|
|
|
|
|
|
发表于 10-4-2006 10:18 PM
|
显示全部楼层
题目都写了嘛
“By sketching a suitable pair of graphs..........”
所以 可以啊。 |
|
|
|
|
|
|
|
发表于 11-4-2006 04:31 PM
|
显示全部楼层
感觉是我的程度
还不算难题
要温习咯 |
|
|
|
|
|
|
|
发表于 11-4-2006 04:52 PM
|
显示全部楼层
我有一个关于Trygonometric Function 的问题要问大家:
A, B and C are an angle of a triangle, prove that tan C=1 if tan A=2 and tan B=3. |
|
|
|
|
|
|
|
发表于 11-4-2006 06:51 PM
|
显示全部楼层
a+b+c = 180
tan(a+b+c) = tan(180) = 0
tan(a+b) = (tan(a) + tan(b)) / ( 1-tan(a)tan(b) )
= (2+3)/(1-2*3)
= 5/-5
= -1
tan(a+b+c) = ( tan(c) + tan(a+b) ) / (1-tan(c)tan(a+b))
0 = (tan(c)+ (-1) )/(1-tan(c)(-1))
= (tan(c)-1)/(tan(c)+1)
tan(c)-1 = 0
tan(c) = 1 |
|
|
|
|
|
|
|
发表于 11-4-2006 11:22 PM
|
显示全部楼层
在“几何问题”的贴里,你会看到一个恒等是:
内角为 A,B,C 的三角形里总会有
tan A + tan B + tan C = tan A * tan B * tan C
所以你只要把 tan A = 2 , tan B = 3 带入,就可以看到 tan C = 1
|
|
|
|
|
|
|
|
发表于 13-4-2006 12:54 AM
|
显示全部楼层
原帖由 kee020041 于 11-4-2006 06:51 PM 发表
a+b+c = 180
tan(a+b+c) = tan(180) = 0
tan(a+b) = (tan(a) + tan(b)) / ( 1-tan(a)tan(b) )
= (2+3)/(1-2*3)
= 5/-5
= -1
tan(a+b+c) = ( tan(c) + tan(a+b) ...
原帖由 dunwan2tellu 于 11-4-2006 11:22 PM 发表
在“几何问题”的贴里,你会看到一个恒等是:
内角为 A,B,C 的三角形里总会有
tan A + tan B + tan C = tan A * tan B * tan C
所以你只要把 tan A = 2 , tan B = 3 带入,就可以看到 tan C = 1
谢谢你们!我明白了!
我之前有请教老师了!他的做法是:
A+B+C=180
[ tan both side ]
tan[ A+B+ C ]=tan 180
[tan(A+B)+tanC]/(1-tan(A+B)tanC=0
-tan(A+B)=tanC
tan C=-[(tanA+tanB)/(1-tanAtanB)]
tan C=-[(2+3)/(1-2*3)]
tan C=-[5/-5]
tan C=-[-1]
tan C=1# |
|
|
|
|
|
|
|
楼主 |
发表于 4-5-2006 08:11 PM
|
显示全部楼层
line L has equation r=(7,0,3)+ t(5,3,2)
plane Pai has equation r(1,1,2)=1
(i)Find coordiantes of pt A where L meet Pai.
(ii)pt B has coordinates (7,0,3) ,pt C is the foot of the perpendicular from B to Pai. Find coordinates of pt C
(iii)Find vector equation for line AC,calculate angle of BAC. |
|
|
|
|
|
|
|
发表于 4-5-2006 11:42 PM
|
显示全部楼层
原帖由 :.孤心.: 于 4-5-2006 08:11 PM 发表
line L has equation r=(7,0,3)+ t(5,3,2)
plane Pai has equation r(1,1,2)=1
(i)Find coordiantes of pt A where L meet Pai.
(ii)pt B has coordinates (7,0,3) ,pt C is the foot of the perpendicular from B to Pai. Find coordinates of pt C
(iii)Find vector equation for line AC,calculate angle of BAC.
(i) r = (7+5t , 3t , 3+2t) ==> A .
A is at plane pi ==> A . (1,1,2) = 1 ==> (7+5t , 3t , 3+2t) .(1,1,2)=1
<==> 13+ 12t = 1 ==> t = -1
hence A = (2,-3,1)
(ii) BC is parallel to the normal vector of plane pi , therefore the vector equation for line BC is
BC = (7,0,3) + k(1,1,2) = (7+k , k , 3+2k)
Since it lies on plane pi ==> (7+k , k , 3+2k).(1,1,2) = 1
==> k = -2 ==> C = (5,-2,-1)
(iii) equation AC = (2,-3,1) + s(-3,1,-2)
==> vector AC = (-3,1,-2)
vector AB = (-5,-3,-2)
AC . AB = (-3,1,-2).(-5,-3,-2) = 16 , |AC| = sqrt{14} ,|AB|=\sqrt{38}
let angle BAC = x , then
cos x = (AB.AC)/(|AC||AB|) = 16/(2sqrt{133}) = ....
x = ..... |
|
|
|
|
|
|
| |
本周最热论坛帖子
|