查看: 1939|回复: 11
|
问题:Proove that (√2) is irrational number
[复制链接]
|
|
大家好,在求学时期遇到的问题,请大家解一解
Proove that (√2) is irrational number |
|
|
|
|
|
|
|
发表于 16-12-2009 10:49 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 17-12-2009 10:00 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 18-12-2009 12:18 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 18-12-2009 02:03 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 18-12-2009 05:19 PM
|
显示全部楼层
Proove that (√2) is irrational number.
Proof: Suppose that by contradiction that √2 is a rational
i.e. √2 = p/q
where p,q belongs to Z, q ≠ 0 and p,q have no common factors.
then 2 = (p/q )^2 → p^2 = 2q^2. ------------- (1)
→ p^2 is divisible by 2.
→ p is also divisible by 2.
→ p = 2p_1 for some p_1 belongs to Z. ---(2)
Substitute p = 2p_1 into (1):
(2p_1)^2 = 2q^2
4(p_1)^2= 2q^2
q^2= 2(p_1)^2
q = 2(q_1) for some p_1 belongs to Z.
∴ gcd (p, q) ≥ 2
A contradiction. |
|
|
|
|
|
|
|
发表于 24-12-2009 06:25 PM
|
显示全部楼层
为什么 gcd(p,q)≥2 那么√2 是irrational 呢?
这不是只证明p 和q 还没有被约简而已吗? |
|
|
|
|
|
|
|
发表于 24-12-2009 10:54 PM
|
显示全部楼层
p^2 = 2q^2
还有一个方法是列出他们的全部prime factor...
p^2和q^2都有odd个prime factor...
p^2 (odd个prime factor) = 2q^2 (even个prime factor)
所以p^2 = 2q^2 是不成立的.. |
|
|
|
|
|
|
|
发表于 6-6-2010 11:27 PM
|
显示全部楼层
大家好,在求学时期遇到的问题,请大家解一解
Proove that (√2) is irrational number
low_yong_xuan 发表于 16-12-2009 10:26 PM 
这老师可以帮忙...
http://www.youtube.com/watch?v=GNjLrqTMVgE&feature=related |
|
|
|
|
|
|
|
发表于 8-8-2010 09:25 AM
|
显示全部楼层
为什么 gcd(p,q)≥2 那么√2 是irrational 呢?
这不是只证明p 和q 还没有被约简而已吗?
antimatter 发表于 24-12-2009 06:25 PM 
为什么 gcd(p,q)≥2 那么√2 是irrational 呢?
gcd是 greatest common divisor,换句话说是highest common factor
他们是同样意思的,GCD = HCF
所以,gcd(p,q)≥2意思是 p和q的HCF至少是2以上。
之前我假设√2 是rational,√2=p/q
p,q have no common factors(意思是互质,coprime),但是prove到最后得到HCF是≥2,
证明了我的假设“p,q have no common factors”是不成立的,所以It's a contradiction,就是√2 是irrational。 |
|
|
|
|
|
|
|
发表于 8-8-2010 12:14 PM
|
显示全部楼层
用背理法...从youtube那边看过来的 
let √2 = m/n (m和n互值)
n√2=m
2n^2=m^2
m^2可以被2除,
m是偶数才可以被称2除,
所以 2 l m
let m=2p,p element of natural number
2n^2=(2p)^2
2n^2=4p^2
n=2p
所以 2 l n
回到最先方程,
√2 = m/n, *2 l m, *2 l n,记得m和n互值,
既然m和n有共同的因数,那m和n互值的假设是不成立的...
就是说最先方程 √2 = m/n 是不成立的,
所以 √2 不能够写成 m/n. |
|
|
|
|
|
|
|
发表于 12-8-2010 04:46 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|