查看: 1102|回复: 6
|
请教数学paper 1
[复制链接]
|
|
Given y=ax²+bx+c,a.b &c are postive constants. Show that the least value of y is -∆/4a where ∆=b²-4ac, & find the corresponding value of x. Sketch the graph for (1)∆>0,(2)∆<0
请问这题怎样做? |
|
|
|
|
|
|
|
发表于 9-9-2009 02:50 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 9-9-2009 02:52 PM
|
显示全部楼层
原帖由 Log 于 9-9-2009 02:50 PM 发表 
在maths t paper 1 讨论区
知道了..
可是还有问题.. |
|
|
|
|
|
|
|
发表于 9-9-2009 03:04 PM
|
显示全部楼层
what problem? |
|
|
|
|
|
|
|
发表于 9-9-2009 09:03 PM
|
显示全部楼层
y = ax^2 + bx + c
= a(x^2 + b/a x) +c
= a[x^2 + b/a x + (1/2)^2(b/a)^2 - (b/2a)^2]+c
= a[x + (b/2a)]^2 - a(b/2a)^2 + c
= a[x+ (b/2a)]^2 - a (b/2a)^2 + c
= a[x+ (b/2a)]^2 + (c - b^2 /4a)
= a[x+ (b/2a)]^2 + (4ac-b^2)/4a
= a[x+ (b/2a)]^2 + - (b^2 - 4ac)/4a
= a[x+ (b/2a)]^2 + - D/4a
minimum of y = -D/4a
corresponding x = -a/2b
for D>0, 2 real roots, sketch any parabola graph on the straight line with two points touching the straight line
for D<0, 2 complex roots, sketch any parabola graph on the straight line with no intersection with the straight line,
这样对吗? |
|
|
|
|
|
|
|
发表于 9-9-2009 09:31 PM
|
显示全部楼层
回复 5# idontwant2b 的帖子
yes,but你是不是写错了呢?corresponding x= -b/2a
not -a/2a |
|
|
|
|
|
|
|
发表于 9-9-2009 09:36 PM
|
显示全部楼层
回复 5# idontwant2b 的帖子
其实不是any parabola.因为given a,b and c are +ve integers
so a>0, parabola = U-shaped curve |
|
|
|
|
|
|
| |
本周最热论坛帖子
|