| 
| 
查看: 1455|回复: 1
 | 
transformation
[复制链接] |  
 |  | 
 
| 1.)The point P,Q,and R are three colinear points on a cartesian plane and T(P)=P1,T(Q)=Q1 and T(R)=R1,where T:R^2->R^2 is a linear transformation. If PQ:QR=a:b,find P1Q1:Q1R1. | 
 |  |  |  |
 
|  |  |  
|  |  | 
 |  | 
 
 发表于 13-11-2007 12:09 PM
|
显示全部楼层 
| PQ = a/(a+b) * PR 
 T(P)=P1,T(Q)=Q1 ==>T(PQ)=P1Q1
 
 同样的 T(PR)=P1R1
 
 所以 T(PQ)=T(a/(a+b)*PR) = a/(a+b)*P1R1
 => P1Q1 = a/(a+b) * P1R1
 
 => P1Q1:Q1R1 = PQ:QR = a:b
 
 *注 : 在linear transformation 里 , T(v + w) = T(v) + T(w) . T = transformation from R^n to R^m . v,w = vector in R^n
 
 [ 本帖最后由 dunwan2tellu 于 13-11-2007 12:11 PM 编辑 ]
 | 
 |  |  |  |
 
|  |  |  
|  |  |  |  | 
            本周最热论坛帖子 |